MYERS ENGINEERING

Structural Calculations

Digitally signed by Mark Myers, PE

Date: 2021.10.28 13:49:21 -07'00'

MUST BEAR ORIGINAL BLUE INK SIGNATURE OR DIGITAL PDF SIGNATURE FOR PERMIT SUBMITTAL.

Project: Masin Residence 7208 North Mercer Way Mercer Island, WA

October 28, 2021

2018 INTERNATIONAL BUILDING CODE 100 MPH WIND, EXPOSURE D, K_{zt} = 1.18 RISK CATEGORY II - SOIL SITE CLASS D SEISMIC DESIGN CATEGORY D (IBC)

3206 50th Street Court, Suite 210-B Gig Harbor, WA 98335 Phone: 253-858-3248

Email: myengineer@centurytel.net

3206 50th Street Ct NW, Ste 210-B Gig Harbor, WA 98335

PROJECT : Masin Residence

Phone: 253-858-3248

Email: myengineer@centurytel.net

DESIGN LOADS:

ROOF DEAD LOADS ROOF LIVE LOADS

15 PSF Total

25 PSF (Snow) 15 PSF Total

FLOOR DEAD LOADS FLOOR LIVE LOADS

40 PSF (Reducible)

STAIR LIVE LOADS

100 PSF

WOODS:	WOOD TYPE:
JOISTS OR RAFTERS 2X	DF#2
BEAMS OR HEADERS 4X - 6X OR LARGER	DF#2
LEDGERS AND TOP PLATES	DF#2
STUDS 2X4 OR 2X6	DF Stud
POSTS	
4X4	DF#2
4X6	
6X6	DF#1

GLUED-LAMINATED (GLB) BEAM & HEADER. Fb=2,400 PSI, Fv=165 PSI, Fc (Perp) =650 PSI, E=1,800,000 PSI.

PARALLAM (PSL) 2.0E BEAM & HEADER. Fb=2.900 PSI, Fv=290 PSI, Fc (Perp) =750 PSI, E=2.000.000 PSI.

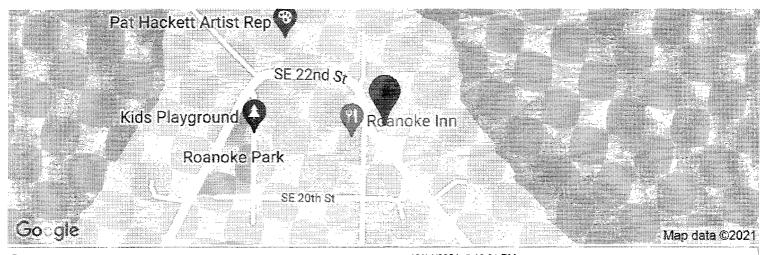
MICROLAM (LVL) 1.9E BEAM & HEADER Fb=2.600 PSI, Fv=285 PSI, Pc (Perp) =750 PSI, E=1.900,000 PSI.

TIMBERSTRAND (LSL) 1.3E BEAM, HEADER, & RIM BOARD Fb=1,700 PSI, Fv=400 PSI, Pc (Perp) =680 PSI, E=1,300,000 PSI.

TRUSSES:

PREFABRICATED WOOD TRUSSES SHALL BE DESIGNED BY A REGISTERED DESIGN PROFESSIONAL REGISTERED IN THE STATE OF WASHINGTON. TRUSS DESIGNS SHALL COMPLY WITH THE REQUIREMENTS OF IBC 2303.4. SUBMITTAL PACKAGE SHALL COMPLY WITH REQUIREMENTS OF IBC 2303.4.1.4.

UNLESS OTHERWISE SPECIFIED BY LOCAL BUILDING OFFICIAL OR STATUTE, TRUSS DESIGNS BEARING THE SEAL AND SIGNATURE OF THE TRUSS DESIGNER SHALL BE AVAILABLE AT TIME OF INSPECTION.


ENGINEERED I-JOISTS

-FLOOR JOISTS & BEAMS OF EQUAL OR BETTER CAPACITY MAY BE SUBSTITUTED FOR THOSE SHOWN ON THIS PLAN, "EQUAL" IS DEFINED AS HAVING MOMENT CAPACITY, SHEAR CAPACITY, AND STIFFNESS WITHIN 3% OF THE SPECIFIED JOISTS OR BEAMS.

Masin Residence

Latitude, Longitude: 47.5941, -122.2427

Date	10/14/2021, 5:10:31 PM
Design Code Reference Document	ASCE7-16
Risk Category	II [*]
Site Class	D - Default (See Section 11.4.3)

Туре	Value	Description
S _S	1.382	MCE _R ground motion. (for 0.2 second period)
S ₁	0.481	MCE _R ground motion. (for 1.0s period)
S _{MS}	1.658	Site-modified spectral acceleration value
S _{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value
S _{DS}	1.105	Numeric seismic design value at 0.2 second SA
S _{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second SA

Туре	Value	Description
SDC	null -See Section 11.4.8	Seismic design category
Fa	1.2	Site amplification factor at 0.2 second
F _v	null -See Section 11.4.8	Site amplification factor at 1.0 second
PGA	0.591	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.709	Site modified peak ground acceleration
TL	6	Long-period transition period in seconds
SsRT	1.382	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	1.531	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	3.02	Factored deterministic acceleration value. (0.2 second)
S1RT	0.481	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.537	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	1.25	Factored deterministic acceleration value. (1.0 second)
PGAd	1.052	Factored deterministic acceleration value. (Peak Ground Acceleration)
C _{RS}	0.903	Mapped value of the risk coefficient at short periods
C _{R1}	0.896	Mapped value of the risk coefficient at a period of 1 s

LATERAL ANALYSIS :

BASED ON 2018 INTERNATIONAL BUILDING CODE (IBC)

Lateral Forces will be distributed along lines of Force/Resistance. Lines of Force/Resistance will be investigated for both wind and seismic lateral loads. Roof and Floor diaphragms are considered flexible.

Risk Category II per IBC 1604.5 & Soils Site Class D (Assumed)

SEISMIC DESIGN:

SEISMIC DESIGN BASED ON 2018 IBC Section 1613.1

LIGHT FRAME CONSTRUCTION LESS THAN THREE STORIES IN HEIGHT ABOVE GRADE.

Seismic Design Data:

$$R := 6.5 \qquad \Omega_0 := 3$$

$$C_d := 4$$

$$\underset{\text{rated for shear resistance (ASCE 7-16 Table 12.2-1)}{\text{$\Omega_0:=3.0$}} \quad \underset{\text{$C_d:=4$}}{\text{$C_d:=4$}} \quad \underset{\text{$Light-frame (wood) walls sheathed w/ wood structural panels rated for shear resistance (ASCE 7-16 Table 12.2-1)}{\text{$C_d:=4$}}$$

$$S_s := 1.382$$

$$S_1 := 0.481$$

$$S_{ms} := 1.658$$

$$S_{ms} := 1.658$$
 $S_{m1} := 0.866$

Equation 11.4-3
$$S_{DS} := \frac{2}{3} \cdot S_{ms} = 1.11$$

Equation 11.4-4
$$S_{D1} := \frac{2}{3} \cdot S_{m1} = 0.58$$

--Seismic Design Category D (S_{DS} greater than 0.50g & S_{D1} greater than 0.20g)

Roof Slope Adjustment Factor:

$$S_a := \frac{1}{\cos\left(\arctan\left(\frac{3}{12}\right)\right)} = 1.03$$

Plan Area for Each Level:

$$A_1 := 2600 \text{ft}^2 \cdot S_a$$
 $A_{2a} := 1970 \text{ft}^2$ $A_{2b} := 1594 \text{ft}^2 \cdot S_a$

$$A_{2a} := 1970 \text{ft}^2$$

$$A_{2b} := 1594 \text{ft}^2 \cdot S_a$$

Plan Perimeter for Each Level:

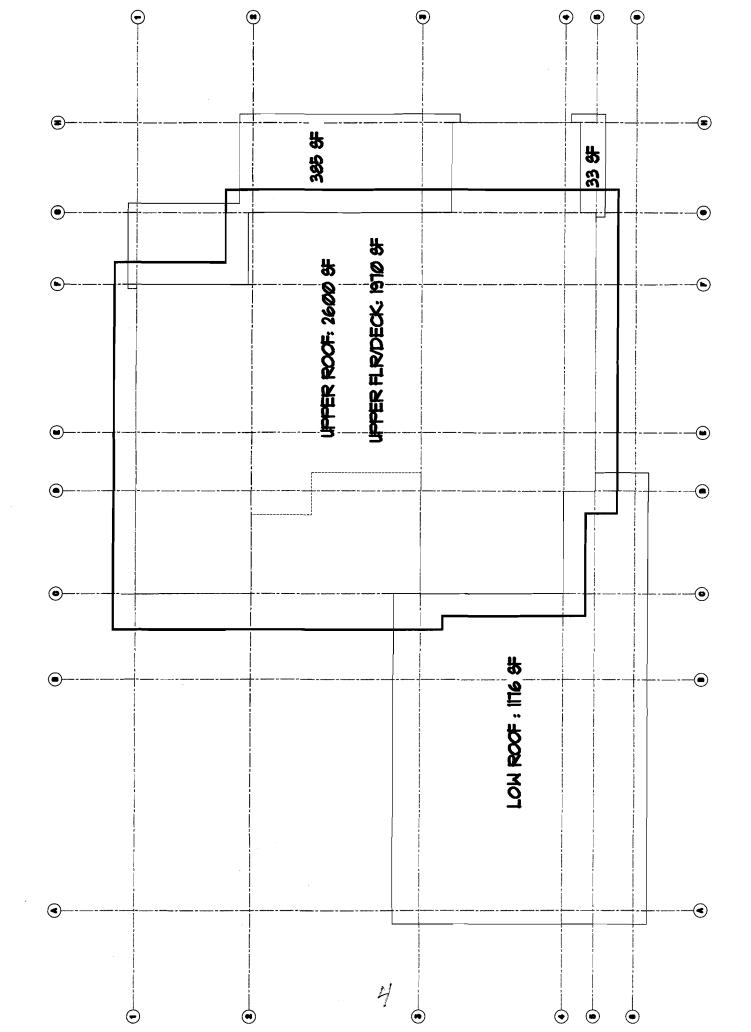
$$P_1 := 2(42.5ft) + 2(51.5ft)$$
 $P_2 := 2(56ft) + 2(78ft)$

$$P_2 := 2(56ft) + 2(78ft)$$

W,w_x = Seismic Weight of Overall Structure, Seismic Weight of Structure above Level x (LB.)

Weight of Structure at Each Level:

Story Weight at Upper Floor:


$$\mathbf{w}_1 := 15 \cdot \mathbf{psf} \cdot \mathbf{A}_1 + 20 \cdot \mathbf{psf} \cdot 4.5 \cdot \mathbf{ft} \cdot \mathbf{P}_1$$

Weight of floors include 10psf weight of floor framing, flooring material, insulation, plus 10psf for miscellaneous interior walls.

Story Weight at Main Floor:

$$w_2 := 15 \cdot psf \cdot (A_{2a} + A_{2b}) + 20 \cdot psf \cdot (4.5 \cdot ft \cdot P_1 + 5 ft \cdot P_2)$$

$$W := w_1 + w_2 = 155036.14 \text{ lb}$$

Approximate Fundamental Period, Ta.

$$C_t := 0.02$$
 $\chi := 0.75$ (per ASCE 7-16 Table 12.8-2)

$$C_t \coloneqq 0.02 \quad \chi \coloneqq 0.75 \quad \text{(per ASCE 7-16 Table 12.8-2)} \qquad h_n \coloneqq 25 \qquad \text{(Structural Height per ASCE 7-16 Sect. 11.2)}$$

$$T_a := C_t \cdot h_n^{\chi} = 0.22$$
 (ASCE 7-16 Eq. 12.8-7)

$$T_i := 6$$
 (per ASCE 7-16 Fig. 22-14)

$$\rm T_a$$
 is less than $\rm T_L,$ therefore Cs need not exceed:

$$\frac{S_{D1}}{\left(\frac{R}{I_e}\right) \cdot T_a} = 0.4 \tag{ASCE 7-16 Eq. 12.8-3} \label{eq:ascentilation}$$

$$C_s$$
 shall not be less than: $0.044S_{DS} \cdot I_e = 0.05$

$$0.044S_{DS} \cdot I_e = 0.05$$

$$C_{s} := \frac{S_{DS}}{\left(\frac{R}{I_{e}}\right)} = 0.17 \qquad \text{(ASCE 7-16 Eq. 12.8-2)}$$

$$V_E := C_s \cdot W = 26364.1 \text{ lb}$$

Vertical Shear distribution at each level per ASCE 7-16 Eq. 12.8-12:

for structures having a period of 0.5 sec or less:

$$h_1 := 20ft$$

$$h_2 := 10ft$$

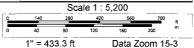
(Height from base to level x)

$$C_{v1} := \frac{(w_1 \cdot h_1)}{(w_1 \cdot h_1 + w_2 \cdot h_2)} = 0.54$$

$$F_1 := C_{v1} \cdot V_E = 14196.36 \, lb$$

$$C_{v2} := \frac{\left(w_2 \cdot h_2\right)}{\left(w_1 \cdot h_1 + w_2 \cdot h_2\right)} = 0.46$$

$$F_2 := C_{v2} \cdot V_E = 12167.73 \text{ lb}$$


Climb Elev: 8.3 ft Desc Elev: 80.6 ft Max. Elev: 95.5 ft Min. Elev: 15.3 ft

Climb Dist: 485.1 ft Desc Dist: 1,142.7 ft

Data use subject to license.

© DeLorme. DeLorme Topo USA® 7.0. www.delorme.com

WIND DESIGN

Use analytical procedure of ASCE 7-16 Chapter 27 (Directional Procedure for buildings of all heights)

$$K_d := 0.85$$
 Wind Directionality Factor (Table 26.6-1). $h := 25 \cdot \text{ft}$ Mean Roof Height as per Sect. 26.2

$$K_e := 1$$
 Ground Elevation Factor (Sect. 26.9)

Exposure Category D (ASCE 7-16 Sect. 26.7.3)

Topographic Factor (K₂₁) (Figure 26.8-1): 2-D Escarpment with building downwind of crest.

$$x := 660 \text{ ft}$$
 $H := 75 \text{ ft}$ $L_h := 282 \text{ ft}$ $z := h$ $\gamma := 2.5$ $\mu := 4$

$$K_{1} := 0.95 \left(\frac{H}{L_{h}}\right) = 0.25 \qquad K_{2} := \left(1 - \frac{x}{\mu L_{h}}\right) = 0.41 \qquad K_{3} := e^{\frac{\left(-\gamma \cdot z\right)}{L_{h}}} = 0.8 \qquad K_{zt} := \left(1 + K_{1} \cdot K_{2} \cdot K_{3}\right)^{2} = 1.18$$

Building is an Enclosed Building as per ASCE 7-16 Sect. 26.12

$$GC_{ni} := .18$$
 +/- Internal Pressure Coefficients (ASCE 7-16 Table 26.13-1)

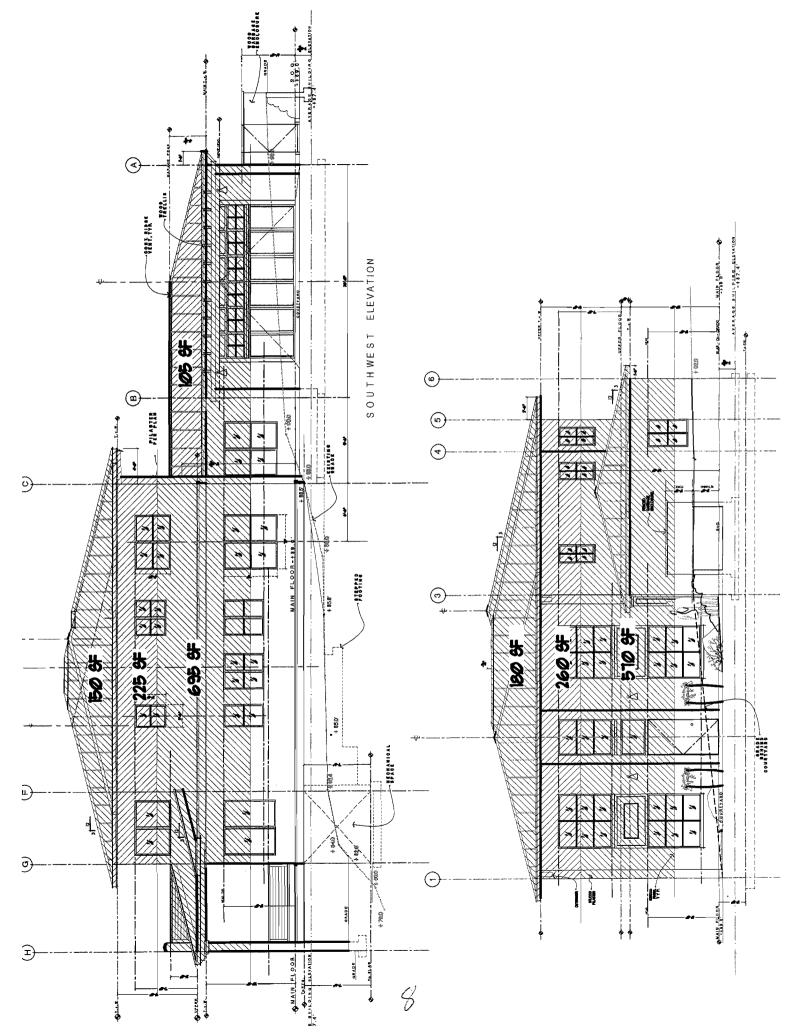
Velocity Pressure Exposure Coefficient (Table 26.10-1):

$$z_g \coloneqq 700 \mathrm{ft} \qquad \alpha \coloneqq 11.5 \qquad \text{(per ASCE 7-16 Table 26.11-1 based on Exposure Category)} \\ z_q = 1200 \mathrm{ft}, \ \alpha = 7.0 \ \text{(Exp B)}, \ z_q = 900 \mathrm{ft}, \ \alpha = 9.5 \ \text{(Exp C)}, \ z_q = 700 \mathrm{ft}, \ \alpha = 11.5 \ \text{(Exp D)}$$

$$z_1 := 20 \text{ft}$$
 $z_2 := 15 \text{ft}$ Height from ground to level x ($z_{min} = 15 \text{ft}$)

$$K_{z1} := 2.01 \left(\frac{z_1}{z_g}\right)^{\frac{2}{\alpha}} = 1.08 \qquad K_{z2} := 2.01 \left(\frac{z_2}{z_g}\right)^{\frac{2}{\alpha}} = 1.03 \qquad K_h := 2.01 \left(\frac{h}{z_g}\right)^{\frac{2}{\alpha}} = 1.13$$

External Pressure Coefficients w/ Roof Pitch = 3/12 (14 degrees) Front to Back & 3/12 (14 degrees) Side to Side Taken from Figure 27.3-1


$$L_{fb} := 42.5 \text{ft} \qquad B_{fb} := 51.5 \text{ft} \qquad \frac{L_{fb}}{B_{fb}} = 0.83 \qquad \frac{h}{L_{fb}} = 0.59 \qquad L_{ss} := 51.5 \text{ft} \qquad B_{ss} := 42.5 \text{ft} \qquad \frac{L_{ss}}{B_{ss}} = 1.21 \qquad \frac{h}{L_{ss}} = 0.49 \qquad \frac{h}{L$$

$$C_{pfl} \coloneqq .8$$
 Windward Wall $C_{psl} \coloneqq .8$ Windward Wall

$$C_{pf2} := -0.18$$
 Windward Roof $C_{ps2} := -0.18$ Windward Roof

$$C_{\mathrm{pf3}} \coloneqq -.52$$
 Leeward Roof $C_{\mathrm{ps3}} \coloneqq -.5$ Leeward Roof

$$C_{pf4} := -.4$$
 Leeward Wall $C_{ps4} := -.46$ Leeward Wall

Velocity Pressure (q_z) Evaluated at Height (z) (Equation 26.10-1)

$$q_{z1} := 0.00256 \cdot K_{z1} \cdot K_{zt} \cdot K_{d} \cdot K_{e} \cdot V^{2} = 27.69 \quad q_{z2} := 0.00256 \cdot K_{z2} \cdot K_{zt} \cdot K_{d} \cdot K_{e} \cdot V^{2} = 26.34 \quad q_{h} := 0.00256 \cdot K_{h} \cdot K_{zt} \cdot K_{d} \cdot K_{e} \cdot V^{2} = 28.79$$

Design Wind Pressures $p = qGC_n - q_i(GC_{pi})$ (Equation 27.3-1) where q_i will conservatively be taken equal to q_h

$$p_{ww1} := q_{z1} \cdot G \cdot C_{pf1} \cdot psf = 18.83 \, lb \cdot ft^{-2}$$

$$p_{ww2} := q_{z2} \cdot G \cdot C_{pf1} \cdot psf = 17.91 \, lb \cdot ft^{-2}$$

$$p_{wav2} := q_{z2} \cdot G \cdot C_{pfl} \cdot psf = 17.91 \, lb \cdot ft^{-2}$$

The Internal Pressures on Windward and

Leeward Walls & Roofs will offset each other for the lateral design of the overall building and will therefore be ignored for

$$p_{wr1} := q_h \cdot G \cdot C_{pf2} \cdot psf = -4.4 \text{ lb} \cdot \text{ft}^{-2}$$

$$p_{lr1} := q_h \cdot G \cdot C_{pf3} \cdot psf = -12.72 \, lb \cdot ft^{-2}$$

$$p_{lw1} := q_h \cdot G \cdot C_{pf4} \cdot psf = -9.79 \, lb \cdot ft^{-2}$$

$$p_{wr2} := q_h \cdot G \cdot C_{ps2} \cdot psf = -4.4 lb \cdot ft^{-2}$$

$$p_{lr2} := q_h \cdot G \cdot C_{ns3} \cdot psf = -12.24 \, lb \cdot ft^{-2}$$

$$p_{iw2} := q_h \cdot G \cdot C_{ps4} \cdot psf = -11.26 \, lb \cdot ft^{-2}$$

$$p_{wv1} - p_{lv1} = 8.32 \text{ lb·ft}^{-2}$$
 $p_{ww1} - p_{lw1} = 28.62 \text{ lb·ft}^{-2}$ $p_{ww2} - p_{lw1} = 27.7 \text{ lb·ft}^{-2}$

$$p_{ww1} - p_{lw1} = 28.62 lb \cdot ft^{-}$$

$$p_{ww2} - p_{lw1} = 27.7 \text{ lb} \cdot \text{ft}^{-2}$$

this application.

$$p_{wr2} - p_{lr2} = 7.83 \text{ lb·ft}^{-2}$$

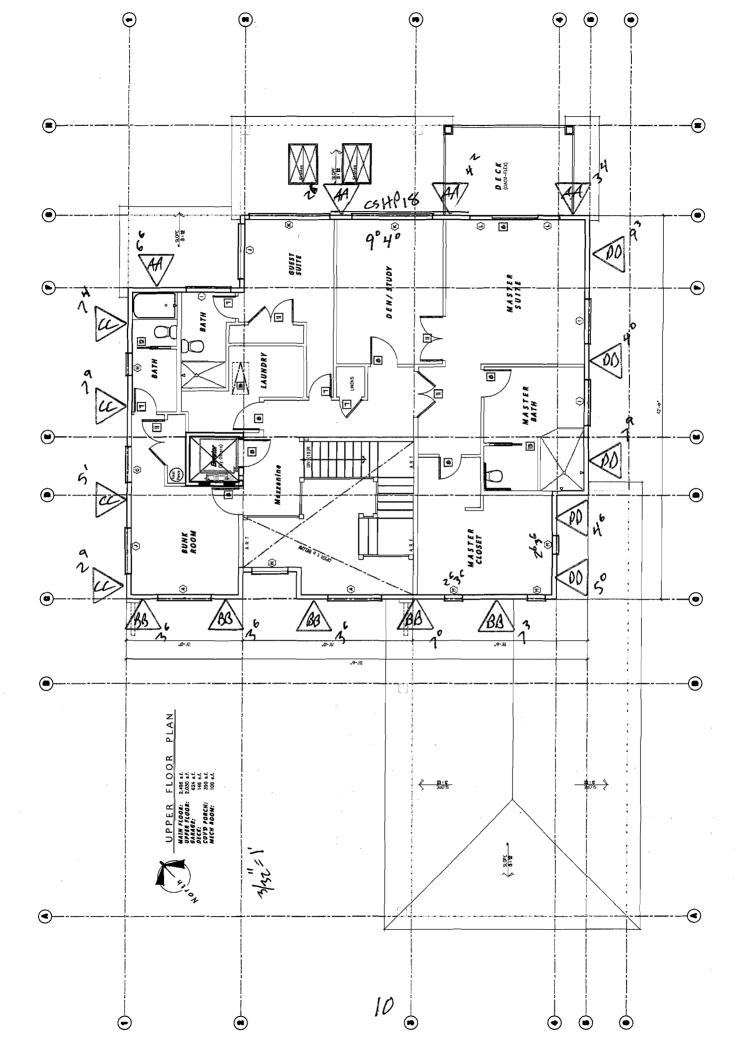
$$p_{ww1} - p_{lw2} = 30.09 \, lb \cdot ft^{-2}$$

$$p_{ww2} - p_{lw2} = 29.17 lb \cdot ft^{-2}$$

Wind Pressure at Upper Roof (Front to Back):

$$V_{1W} := (p_{wr1} - p_{lr1})180ft^{2} + (p_{ww1} - p_{lw1}) \cdot 260 \cdot ft^{2} = 8938.66 \text{ lb}$$

Wind Pressure at Main Floor (Front to Back):


$$V_{2W} := (p_{wr1} - p_{lr1})0ft^2 + (p_{ww2} - p_{lw1}).570 \cdot ft^2 = 15789.29 lb$$

Wind Pressure at Upper Roof (Side to Side):

$$V_{3W} := (8psf) \cdot 150ft^2 + (p_{ww1} - p_{lw2}) \cdot 225ft^2 = 7969.74 lb$$

Wind Pressure at Main Floor (Side to Side):

$$V_{4W} := (8psf) \cdot 105ft^2 + (p_{ww2} - p_{lw2}) \cdot 695ft^2 = 21112.27lb$$

WALL AA:

Story Shear due to Wind:

$$V_{3W} = 7969.74 \, lb$$

Story Shear due to Seismic:

$$F_1 = 14196.361b$$

$$L_t := 42.5 \cdot ft$$

Bldg Width in direction of Load: $L_t := 42.5 \cdot \text{ft}$ Distance between shear walls: $L_1 := 42.5 \cdot \text{ft}$

$$L_1 := 42.5 \cdot ft$$

Shear Wall Length:

Laa :=
$$\left[6.5 + 2.5 + 4.17 + 3.33 \left(\frac{6.66}{9}\right)\right]$$
 ft = 15.63 ft

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

Wind Force: vaa := $\frac{\frac{0.6V_{3W}}{L_t}.\frac{L_1}{2}}{\frac{1}{2}}$

$$0 = 10$$

Seismic Force:
$$\rho := 1.0$$
 $E_{aa} := \frac{\rho \cdot \frac{0.7F_1}{L_t} \cdot \frac{L_1}{2}}{Laa}$

$$vaa = 152.93 \text{ lb·ft}^{-1}$$

$$vaa = 152.93 \text{ lb·ft}^{-1}$$
 $\frac{vaa}{C_0} = 152.93 \text{ lb·ft}^{-1}$

$$E_{aa} = 317.81 \text{ lb·ft}^{-1}$$

$$E_{aa} = 317.81 \text{ lb·ft}^{-1}$$
 $\frac{E_{aa}}{C_{a}} = 317.81 \text{ lb·ft}^{-1}$

P1-4: 7/16" Sheathing w/ 8d nails @ 4" O.C.

Wind Capacity = 532 plf Seismic Capacity = 380 plf

Dead Load Resisting Overturning:

$$L_{aa} := 15.67 \cdot ft$$

 $L_{aa} := 15.67 \cdot ft$ Plate Height: $Pt := 9 \cdot ft$

$$W_{aa} := (15 \cdot psf) \cdot 6.5 \cdot ft + (20 \cdot psf) \cdot Pt + (10psf) \cdot 0ft$$

DLRaa :=
$$\frac{W_{aa} \cdot L_{aa}}{2}$$
 DLRaa = 2174.21 lb

Chord Force:

$$CFaa_{w} := \frac{vaa \cdot 6.67 ft \cdot Pt}{C_{o} \cdot L_{aa}} \qquad CFaa_{w} = 585.85 \text{ lb}$$

$$CFaa_{w} = 585.85 lb$$

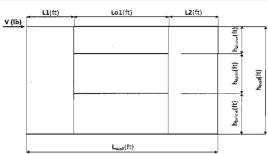
CFaa_s :=
$$\frac{E_{aa} \cdot 6.67 \text{ft} \cdot \text{Pt}}{C_{o} \cdot L_{aa}}$$
 CFaa_s = 1217.5 lb

$$CFaa_s = 1217.5 lb$$

Holdown Force:

$$HDFaa_w := CFaa_w - 0.6 \cdot DLRaa = -718.67 lb$$

$$HDFaa_s := CFaa_s - (0.6 - 0.14S_{DS})DLRaa = 249.42 lb$$


No Holdown Required

Force Transfer Around Openings Calculator

Project Information

Code:	2018 IBC			Date: 10/26/2021	
Designer:	Mark Myers, PE				
Client:	RFA/RKK		•		
Project:	Masin Residence				
Wall Line:	۸۸				

Shear Wall Calculation Variables

٧	2121 lbf		Opening 1
L1	2,50 ft	ha1	2.00 ft
L2	4.17 ft	ho1	4.00 ft
h _{wall}	9.00 ft	hb1	3.00 ft
L _{wall}	15.67 ft	Lo1	9.00 ft

Adj. Fact	or Method = :	2bs/h
Wall Pier Asp	ect Ratio	Adj. Factor
P1=ho1/L1=	1.60	N/A
P2=ho2/L2=	0.96	N/A

1. Hold-down forces: H = Vhwall/Lwall

1218 lbf

2. Unit shear above + below opening

First opening: va1 = vb1 = H/(ha1+hb1) = 244 plf Check V1*L1+V2*L2=V?

6. Unit shear beside opening

V1 = (V/L)(L1+T1)/L1 = 318 plf V2 = (V/L)(T2+L2)/L2 = 318 plf 2121 lbf **OK**

3. Total boundary force above + below openings

First opening: O1 = va1 x (Lo1) = 2193 lbf 7. Resistance to corner forces

795 lbf 1326 lbf

-45 lbf

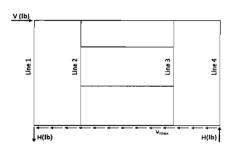
4. Corner forces

F1 = O1(L1)/(L1+L2) = 822 lbf F2 = O1(L2)/(L1+L2) = 1371 lbf R2 = V2*L2 =

R2-F2 =

R1 = V1*L1 =

R1-F1 = -27 lbf


5. Tributary length of openings

T1 = (L1*L01)/(L1+L2) = 3.37 ft T2 = (L2*Lo1)/(L1+L2) = 5.63 ft 9. Unit shear in corner zones

8. Difference corner force + resistance

vc2 = (R2-F2)/L2 =

vc1 = (R1-F1)/L1 = -11 plf -11 plf

Check Summary of Shear Values for One Opening

Line 1: vc1(ha1+hb1)+V1(ho1)=H?		-54	1273	1218 lbf
Line 2: va1(ha1+hb1)-vc1(ha1+hb1)-V1(ho1)=0?	1218	-54	1273	0
Line 3: va1(ha1+hb1)-vc2(ha1+hb1)-V1(ho1)=0?	1218	-54	1273	0
Line 4: vc2(ha1+hb1)+V2(ho1)=H?		-54	1273	1218 lbf

Design Summary*

				,		
Req. Sheathing Capacity	318 plf		4-Term Deflection	0.048 in.	3-Term Deflection	0.060 in.
Req. Strap Force	1371 lbf		4-Term Story Drift %	0.002 %	3-Term Story Drift %	0.002 %
Req. HD Force (H)	1218 lbf		·	See Page 2	·	See Page 3
Req. Shear Wall Anchorage Force (v_{max})	135 plf]				

*The Design Summary assumes that the shear wall is designed as blocked.

Dead Load Resisting Overturning:

$$L_{aa} := 3.33 \cdot f$$

Laa:= 3.33-ft Plate Height: Pt := 9-ft

$$W_{aa} := (15 \cdot psf) \cdot 3 \cdot ft + (20 \cdot psf) \cdot Pt + (10psf) \cdot 0ft$$

$$DLRaa := \frac{W_{aa} \cdot L_{aa}}{2}$$
 DLRaa = 374.63 lb

Chord Force:

$$CFaa_{w} := \frac{vaa \cdot L_{aa} \cdot Pt}{C_{o} \cdot L_{aa}}$$

$$CFaa_{w} = 1376.36 \text{ lb}$$

$$CFaa_w = 1376.36 lb$$

$$CFaa_s := \frac{E_{aa} \cdot L_{aa} \cdot Pt}{C_o \cdot L_{aa}}$$
 CFaa_s = 2860.3 lb

$$CFaa_s = 2860.3 lb$$

Holdown Force:

HDFaa_s:= CFaa_s -
$$(0.6 - 0.14S_{DS})$$
DLRaa = 2693.5 lb

Simpson MSTC40 at wall below or MSTC28 at flush/rim beam

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{\text{N}} := 102 \cdot \text{lb} \quad C_{\text{D}} := 1.6$$

$$B_{\text{p}} := \frac{\left(Z_{\text{N}} \cdot C_{\text{D}} \cdot C_{\text{o}}\right)}{\text{vaa}} = 1.07 \, \text{ft} \qquad \frac{\left(C_{\text{D}} \cdot Z_{\text{N}} \cdot C_{\text{o}}\right)}{E_{\text{aa}}} = 0.51 \, \text{ft}$$

16d @ 6" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_s := 860 \cdot lb$$
 $C_D := 1.6$ $C_B := A_s \cdot C_D$ $C_B = 1376 \, lb$

As :=
$$\frac{\left(Z_{B} \cdot C_{o}\right)}{\text{vaa}} = 9 \text{ ft}$$
 $\frac{\left(Z_{B} \cdot C_{o}\right)}{E_{aa}} = 4.33 \text{ ft}$

5/8" A.B. @ 48" o.c.

WALL BB:

Story Shear due to Wind:

$$V_{3W} = 7969.74 \, lb$$

Story Shear due to Seismic: $F_1 = 14196.36 lb$

$$F_1 = 14196.36 \, lb$$

$$L_{t} = 42.5 \cdot \text{ft}$$

Bldg Width in direction of Load: $L_{\text{Max}} := 42.5 \cdot \text{ft}$ Distance between shear walls: $L_{\text{Max}} := 42.5 \cdot \text{ft}$

$$L_{d} := 42.5 \cdot \text{ft}$$

Shear Wall Length:

Lbb :=
$$\left[3.3.5\left(\frac{7}{9}\right) + 7 + 7.25\right]$$
ft = 22.42 ft

$$\frac{\%}{10 \cdot \text{ft}} = \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

Percent full height sheathing: $\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$ % = 100 Max Opening Height = 0ft-0in, Therefore $C_{\infty} := 1.00$ per AF&PA SDPWS Table 4.3.3.5

Wind Force: vbb := $\frac{\frac{0.6V_{3W}}{L_t} \cdot \frac{L_1}{2}}{\frac{1.11}{L_t}}$

$$\rho := 1.0$$

Seismic Force:
$$\rho := 1.0$$
 $E_{bb} := \frac{\rho \cdot \frac{0.7F_1}{L_t} \cdot \frac{L_1}{2}}{Lbb}$

$$vbb = 106.66 \, lb \cdot ft^{-1}$$

$$vbb = 106.66 \text{ lb} \cdot \text{ft}^{-1}$$
 $\frac{vbb}{C_0} = 106.66 \text{ lb} \cdot \text{ft}^{-1}$

$$E_{bb} = 221.65 \, lb \cdot ft^{-1}$$

$$E_{bb} = 221.65 \text{ lb·ft}^{-1}$$
 $\frac{E_{bb}}{C_0} = 221.65 \text{ lb·ft}^{-1}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 364 plf Seismic Capacity = 260 plf

Dead Load Resisting Overturning:

$$L_{bb} := 3.5 \cdot ft$$

 $L_{bb} := 3.5 \cdot ft$ Plate Height: $Pt := 9 \cdot ft$

$$W_{bb} := (15 \cdot psf) \cdot 3 \cdot ft + (20 \cdot psf) \cdot Pt + (10psf) \cdot 0ft$$

$$DLRbb := \frac{W_{bb} L_{bb}}{2}$$

$$DLRbb = 393.75 lb$$

Chord Force:

$$CFbb_w := \frac{vbb \cdot L_{bb} \cdot Pt}{C_o \cdot L_{bb}}$$

$$CFbb_w = 959.92 \, lb$$

$$CFbb_w = 959.92 \, lb$$

$$CFbb_s := \frac{E_{bb} \cdot L_{bb} \cdot Pt}{C_c \cdot L_{bb}}$$

$$CFbb_s = 1994.88 \text{ lb}$$

$$CFbb_{s} = 1994.88 \text{ lb}$$

Holdown Force:

$$HDFbb_w := CFbb_w - 0.6 \cdot DLRbb = 723.67 lb$$

$$HDFbb_s := CFbb_s - (0.6 - 0.14S_{DS}) \cdot DLRbb = 1819.56 \, lb$$

Simpson MSTC40 at wall below or MSTC28 at flush/rim beam

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{DN} := 1.6$$

$$E_{NN} := \frac{\left(C_D \cdot Z_N \cdot C_o\right)}{vbb} = 1.53 \text{ ft} \qquad \frac{\left(C_D \cdot Z_N \cdot C_o\right)}{E_{bb}} = 0.74 \text{ ft}$$

16d @ 8" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_{s} := 860 \cdot lb$$
 $C_{D} := 1.6$ $Z_{B} := A_{s} \cdot C_{D}$ $Z_{B} = 1376 \, lb$

As:=
$$\frac{\left(Z_{\text{B}} \cdot C_{\text{o}}\right)}{\text{vbb}} = 12.9 \text{ ft}$$
 $\frac{\left(Z_{\text{B}} \cdot C_{\text{o}}\right)}{E_{\text{bb}}} = 6.21 \text{ ft}$

WALL CC:

Story Shear due to Wind:

 $V_{1W} = 8938.66 \, lb$

Story Shear due to Seismic: $F_1 = 14196.36 \, lb$

$$L_L := 51.5 \cdot ft$$

Distance between shear walls:

$$L_{ab} := 51.5 \cdot ft$$

Shear Wall Length:

Lcc :=
$$\left[2.75\left(\frac{5.5}{9}\right) + 5 + 7.75 + 7.33\right]$$
 ft = 21.76 ft

Percent full height sheathing: $\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

% = 100 Max Opening Height = 0ft-0in, Therefore Contract = 1.00 per AF&PA SDPWS Table 4.3.3.5

Wind Force: $vcc := \frac{\frac{0.6V_{1W}}{L_t} \cdot \frac{L_1}{2}}{\frac{L_1}{L_t}}$

Seismic Force:
$$\rho := 1.0 \qquad \qquad E_{cc} := \frac{\rho \cdot \frac{0.7F_1}{L_t} \cdot \frac{L_1}{2}}{Lcc}$$

$$vcc = 123.23 \text{ lb·ft}^{-1}$$
 $\frac{vcc}{C_0} = 123.23 \text{ lb·ft}^{-1}$

$$E_{cc} = 228.34 \, \text{lb} \cdot \text{ft}^{-1}$$
 $\frac{E_{cc}}{C_{c}} = 228.34 \, \text{lb} \cdot \text{ft}^{-1}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 364 plf Seismic Capacity = 260 plf

Dead Load Resisting Overturning:

$$L_{cc} := 2.75 \cdot ft$$
 Plate Height: $Pt := 9 \cdot ft$

$$W_{cc} := (15 \cdot psf) \cdot 3 \cdot ft + (20 \cdot psf) \cdot Pt + (10psf) \cdot 0ft$$

DLRcc :=
$$\frac{W_{cc} \cdot L_{cc}}{2}$$
 DLRcc = 309.37 lb

$$DLRcc = 309.37 lb$$

Chord Force:

$$CFcc_{w} := \frac{vcc \cdot L_{cc} \cdot Pt}{C_{o} \cdot L_{cc}}$$

$$CFcc_{w} = 1109.09 \text{ lb}$$

$$CFcc_{w} = 1109.09 \, lb$$

$$CFcc_s := \frac{E_{cc} \cdot L_{cc} \cdot Pt}{C_{cc} \cdot I_{cc}}$$

$$CFcc_s = 2055.03 \text{ lb}$$

$$CFcc_s = 2055.03 \text{ lb}$$

Holdown Force:

$$HDFcc_w := CFcc_w - 0.6DLRcc = 923.46 lb$$

$$HDFcc_s := CFcc_s - (0.6 - 0.14S_{DS}) \cdot DLRcc = 1917.28 lb$$

Simpson MSTC40 at wall below or MSTC28 at flush/rim beam

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{DN} := 1.6$$

$$B_{RN} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{v_{CC}} = 1.32 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{CC}} = 0.71 \text{ ft}$$

16d @ 8" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_{S} := 860 \cdot lb \qquad C_{D} := 1.6 \qquad Z_{B} := A_{S} \cdot C_{D} \qquad Z_{B} = 1376 \, lb$$

$$A_{S} := \frac{\left(Z_{B} \cdot C_{o}\right)}{v_{CC}} = 11.17 \, ft \qquad \frac{\left(Z_{B} \cdot C_{o}\right)}{E_{CC}} = 6.03 \, ft$$

Email: mvengineer@centurvtel.net

WALL DD:

Story Shear due to Wind:

Gig Harbor, WA 98335

$$V_{1W} = 8938.66 \, lb$$

Story Shear due to Seismic: $F_1 = 14196.361b$

$$F_1 = 14196.361b$$

Bldg Width in direction of Load:

$$L_{ta} := 51.5 \cdot ft$$

Distance between shear walls:

$$L_{\rm ab} := 51.5 \cdot \text{ft}$$

Shear Wall Length: Ldd :=
$$\left[9.25 + 4\left(\frac{8}{9}\right) + 7.75 + 4.5 + 5\right]$$
ft = 30.06 ft

Percent full height sheathing:
$$\% := \left(\frac{10 \cdot \text{ft}}{10.0}\right) \cdot 100$$

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

% =
$$100$$
 Max Opening Height = 0ft-0in, Therefore C_{NM} := 1.00 per AF&PA SDPWS Table 4.3.3.5

$$\text{Wind Force: } vdd := \frac{\frac{0.6V_{1W}}{L_t} \cdot \frac{L_1}{2}}{Ldd}$$

Seismic Force:
$$\rho := 1.0$$
 $E_{dd} := \frac{\rho \cdot \frac{0.7F_1}{L_t} \cdot \frac{L_1}{2}}{1 dd}$

$$vdd = 89.22 lb \cdot ft^{-1}$$

$$vdd = 89.22 lb ft^{-1}$$
 $\frac{vdd}{C_0} = 89.22 lb ft^{-1}$

$$E_{dd} = 165.32 \, lb \cdot ft^{-1}$$

$$E_{dd} = 165.32 \text{ lb·ft}^{-1}$$
 $\frac{E_{dd}}{C_0} = 165.32 \text{ lb·ft}^{-1}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 364 plf Seismic Capacity = 260 plf

Dead Load Resisting Overturning:

$$L_{dd} := 4 \cdot ft$$

Plate Height: Pt := 9-ft

$$W_{dd} := (15 \cdot psf) \cdot 6.5 \cdot ft + (20 \cdot psf) \cdot Pt + (10psf) \cdot 0ft$$

$$DLRdd := \frac{W_{dd} \cdot L_{dd}}{2}$$
 DLRdd = 555 lb

$$DLRdd = 555 lb$$

Chord Force:

$$CFdd_w := \frac{vdd \cdot L_{dd} \cdot Pt}{C_o \cdot L_{dd}}$$

$$CFdd_w = 802.99 \, lb$$

$$CFdd_w = 802.99 lb$$

$$CFdd_s := \frac{E_{dd} \cdot L_{dd} \cdot Pt}{C \cdot I_{dd}} \qquad CFdd_s = 1487.86 \text{ lb}$$

$$CFdd_s = 1487.86 lb$$

Holdown Force:

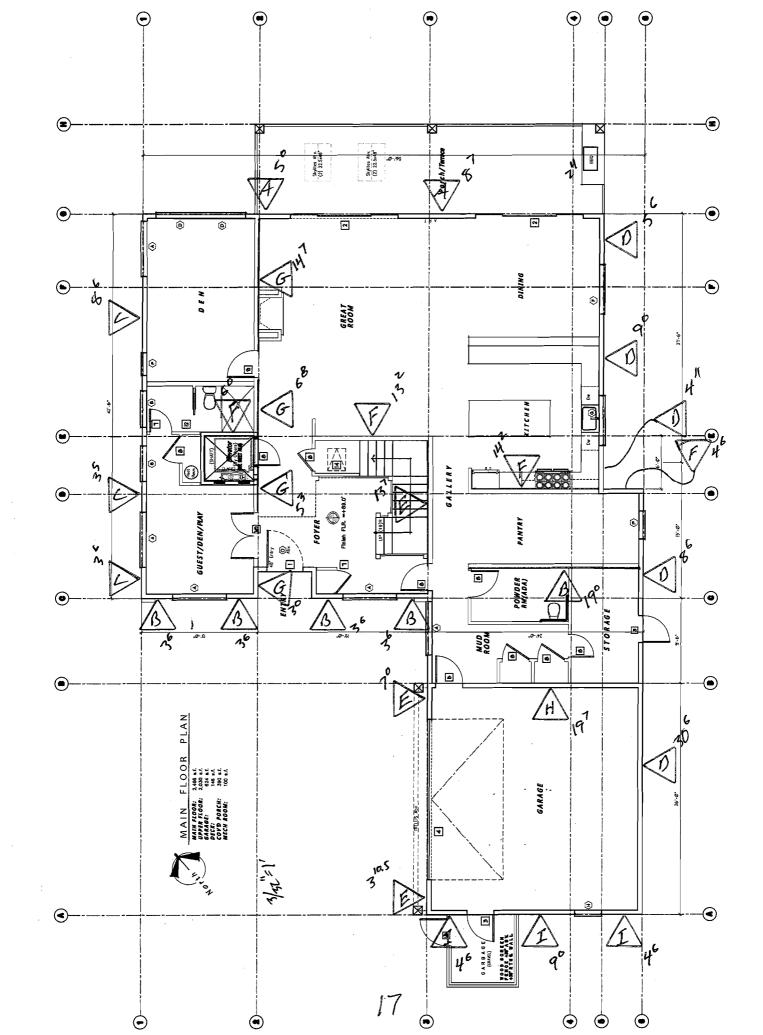
$$HDFdd_w := CFdd_w - 0.6DLRdd = 469.99 lb$$

$$HDFdd_s := CFdd_s - (0.6 - 0.14S_{DS})DLRdd = 1240.75 lb$$

Simpson MSTC40 at wall below or MSTC28 at flush/rim beam

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{N} := 102 \cdot lb \quad C_{D} := 1.6$$


$$B_{D} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{vdd} = 1.83 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{dd}} = 0.99 \text{ ft}$$

16d @ 12" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

As: =
$$860 \cdot lb$$
 C_D := 1.6 Z_B := $A_s \cdot C_D$ Z_B = 1376 lb

As: = $\frac{\left(Z_B \cdot C_o\right)}{vdd}$ = 15.42 ft $\frac{\left(Z_B \cdot C_o\right)}{E_{dd}}$ = 8.32 ft

WALL A:

Story Shear due to Wind:

Gig Harbor, WA 98335

$$V_{4W} = 21112.27 \, lb$$

Story Shear due to Seismic: $F_2 = 12167.73 \text{ lb}$

$$F_2 = 12167.73 \, lb$$

Bldg Width in direction of Load: L_{tt}:= 78·ft

$$L_t := 78 \cdot \text{ft}$$

Distance between shear walls:

$$L_{1} := 27.5 \cdot \text{ft}$$

Shear Wall Length:

$$La := (5 + 8.583) ft = 13.58 ft$$

Percent full height sheathing:
$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

% = 100 Max Opening Height = 0ft-0in, Therefore C_{∞} := 1.00 per AF&PA SDPWS Table 4.3.3.5

$$\text{Wind Force: } va := \frac{vaa \cdot Laa + \left(\frac{0.6 V_{4W}}{L_t} \cdot \frac{L_1}{2}\right)}{La} \qquad \text{Seismic Force: } \rho := 1.0 \qquad E_a := \frac{E_{aa} \cdot Laa + \left(\rho \cdot \frac{0.7 F_2}{L_t} \cdot \frac{L_1}{2}\right)}{La}$$

$$\mathbf{E}_{aa} \cdot \mathbf{Laa} + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)$$

$$va = 340.42 \, lb \cdot ft^{-1}$$

$$va = 340.42 \text{ lb·ft}^{-1}$$
 $\frac{va}{C_0} = 340.42 \text{ lb·ft}^{-1}$

$$E_a = 476.34 \, \text{lb} \cdot \text{ft}^{-1}$$

$$E_a = 476.34 \text{ lb·ft}^{-1}$$
 $\frac{E_a}{C_0} = 476.34 \text{ lb·ft}^{-1}$

P1-3: 7/16" Sheathing w/ 8d nails @ 3" O.C.

Wind Capacity = 686 plf Seismic Capacity = 490 plf

Dead Load Resisting Overturning:

$$L_a := 5 \cdot ft$$

 $L_a := 5 \cdot \hat{\mathbf{f}}$ Plate Height: $P_{\mathbf{MM}} := 10 \cdot \hat{\mathbf{f}}$

$$W_a := (15 \cdot psf) \cdot 5 \cdot ft + (20 \cdot psf) \cdot Pt + (10psf) \cdot 1ft$$

$$DLRa := \frac{W_a \cdot L_a}{2}$$

$$DLRa = 712.5 \, lb$$

$$DLRa = 712.5 lb$$

Chord Force:

$$CFa_{w} := \frac{va \cdot L_{a} \cdot Pt}{C_{0} \cdot L_{a}}$$

$$CFa_{w} = 3404.22 \text{ lb}$$

$$CFa_{w} = 3404.22 \text{ lb}$$

$$CFa_w + CFaa_w = 4780.58 lb$$

$$CFa_s := \frac{E_a \cdot L_a \cdot Pt}{C \cdot L_a}$$

$$CFa_s = 4763.45 \text{ lb}$$

$$CFa_s = 4763.45 \, lb$$

$$CFa_s + CFaa_s = 7623.75 lb$$

Holdown Force:

$$HDFa_{W} := CFa_{W} - 0.6 \cdot DLRa = 2976.72 lb$$

$$HDFa_w + HDFaa_w = 4128.3 lb$$

$$HDFa_s := CFa_s - (0.6 - 0.14S_{DS}) \cdot DLRa = 4446.21 \text{ lb}$$

$$HDFa_s + HDFaa_s = 7139.71 lb$$

Simpson HDU8 at 4.5"x5.5" post

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot \text{lb} \quad Z_{N} := 1.6$$

$$Z_{NN} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{va} = 0.48 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{a}} = 0.34 \text{ ft}$$

16d @ 4" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_{S} := 860 \cdot lb \qquad C_{D} := 1.6 \qquad Z_{B} := A_{S} \cdot C_{D} \qquad Z_{B} = 1376 \, lb$$

$$A_{S} := \frac{\left(Z_{B} \cdot C_{o}\right)}{va} = 4.04 \, ft \qquad \frac{\left(Z_{B} \cdot C_{o}\right)}{E_{O}} = 2.89 \, ft$$

WALL B:

Story Shear due to Wind: $V_{4W} = 21112.27 lb$

$$V_{4W} = 21112.27 \, lb$$

Story Shear due to Seismic: $F_2 = 12167.73 \, lb$

$$F_2 = 12167.73 \, lb$$

Bldg Width in direction of Load: L_{t,}:= 78·ft

$$L_{t} = 78 \cdot ft$$

Distance between shear walls: $L_2 := 9.5 \text{ft}$ $L_2 := 9.5 \text{ft}$

$$L_1 := 15 \cdot ft$$

$$L_2 := 9.5 \text{ft}$$

Shear Wall Length:

Lb :=
$$\left[2.3.5\left(\frac{7}{10}\right) + 19\right]$$
ft = 23.9 ft

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

 $\text{Percent full height sheathing:} \quad \text{$\frac{6}{40 \cdot \text{ft}}$} = \frac{10 \cdot \text{ft}}{10 \cdot \text{ft}} \cdot 100 \\ \text{$\text{per AF\&PA SDPWS Table 4.3.3.5} \\ \text{Wind Force:} \quad \text{$\text{vb}:=$} \frac{\text{$\text{vbb} \cdot \text{Lbb}} + \left(\frac{0.6 V_{4W}}{L_t} \cdot \frac{L_1 + L_2}{2}\right)}{\text{Lb}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Seismic Force:}} \quad \text{$\text{per AF\&PA SDPWS Table 4.3.3.5}} \\ \text{$\text{Per AF\&PA SDPW$

$$E_b := \frac{E_{bb} \cdot Lbb + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1 + L_2}{2}\right)}{Lb}$$

$$vb = 183.28 \text{ lb ft}^{-1}$$
 $\frac{vb}{C_0} = 183.28 \text{ lb ft}^{-1}$

$$E_b = 263.87 \, lb \cdot ft^{-1}$$
 $\frac{E_b}{C_0} = 263.87 \, lb \cdot ft^{-1}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C. Wind Capacity = 364 plf

Seismic Capacity = 260 plf (within 2%)

<u>Dead Load Resisting Overturning:</u> $L_b := 19 \cdot \text{ft}$ Plate Height: $P_{\text{MAX}} := 10 \cdot \text{ft}$

$$L_b := 19 \cdot ft$$

$$W_b := (15 \cdot psf) \cdot 0 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 1ft$$

$$DLRb := \frac{W_b \cdot L_b}{2}$$

$$DLRb = 1045 \, lb$$

Chord Force:

$$CFb_{w} := \frac{vb \cdot L_{b} \cdot Pt}{C_{o} \cdot L_{b}} \qquad \qquad CFb_{w} = 1832.78 \text{ lb}$$

$$CFb_{w} = 1832.78 \text{ lb}$$

$$CFb_s := \frac{E_b \cdot L_b \cdot Pt}{C_o \cdot L_b}$$

$$CFb_s = 2638.66 \text{ lb}$$

$$CFb_s = 2638.66 lb$$

Holdown Force:

$$HDFb_w := CFb_w - 0.6 \cdot DLRb = 1205.78 \text{ lb}$$

$$HDFb_s := CFb_s - (0.6 - 0.14S_{DS}) \cdot DLRb = 2173.37 \text{ lb}$$

Simpson MSTC40 to cripple wall & HDU2 w/ SSTB16 or PAB5 anchor (6" embed) to foundation

Dead Load Resisting Overturning:

$$L_b := 3.5 \cdot \text{ft}$$

Plate Height: Pt := 10-ft

$$W_{b} := (15 \cdot psf) \cdot 0 \cdot ft + (20 \cdot psf) \cdot Pt + (10psf) \cdot 1ft$$

$$DLRb := \frac{W_b \cdot L_b}{2}$$
 DLRb = 367.5 lb

$$DLRb = 367.5 lb$$

Chord Force:

$$\underbrace{CFb}_{w} := \frac{vb \cdot L_{b} \cdot Pt}{C_{o} \cdot L_{b}}$$

$$CFb_{w} = 1832.78 \text{ lb}$$

$$CFb_{w} = 1832.78 \text{ lb}$$

$$\underbrace{CFb_s} := \frac{E_b \cdot L_b \cdot Pt}{C_0 \cdot L_b} \qquad \qquad CFb_s = 2638.66 \text{ lb}$$

$$CFb_s = 2638.66 \, lb$$

Holdown Force:

$$HDFb_{wa} := CFb_{w} - 0.6 \cdot DLRb = 1612.28 \text{ lb}$$

$$HDFb_s := CFb_s - (0.6 - 0.14S_{DS}) \cdot DLRb = 2475.03 lb$$

$$HDFb_w + HDFbb_w = 2335.95 lb$$

$$HDFb_s + HDFbb_s = 4294.59 lb$$

Simpson STHD14/RJ (within 1%) or HDU4 w/ SB5/8x24 Anchor

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{DN} := 1.6$$

$$R_{DN} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{0}\right)}{vb} = 0.89 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{0}\right)}{E_{b}} = 0.62 \text{ ft}$$

16d @ 8" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_{s} := 860 \cdot lb$$
 $C_{D} := 1.6$ $Z_{B} := A_{s} \cdot C_{D}$ $Z_{B} = 1376 \, lb$

As:
$$\frac{\left(Z_{B} \cdot C_{o}\right)}{vb} = 7.51 \text{ ft} \qquad \frac{\left(Z_{B} \cdot C_{o}\right)}{E_{b}} = 5.21 \text{ ft}$$

5/8" A.B. @ 60" o.c.

WALL C:

Story Shear due to Wind:

Gig Harbor, WA 98335

$$V_{2W} = 15789.29 \, lb$$

Story Shear due to Seismic:

$$F_2 = 12167.73 \, lb$$

Bldg Width in direction of Load: L_{th}:= 56·ft

$$L_t := 56 \cdot ft$$

Distance between shear walls:

$$L_{\rm ab} := 13 \cdot \text{ft}$$

Shear Wall Length:

Lc :=
$$\left[3.5\left(\frac{7}{10}\right) + 3.42\left(\frac{6.83}{10}\right) + 8.5\right]$$
ft = 13.29 ft

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

 $\text{Wind Force: } vc := \frac{vcc \cdot Lcc + \left(\frac{0.6 V_{2W}}{L_t} \cdot \frac{L_1}{2}\right)}{\text{Seismic Force: }} \\ \text{Seismic Force: } \rho := 1.0 \\ E_c := \frac{E_{cc} \cdot Lcc + \left(\rho \cdot \frac{0.7 F_2}{L_t} \cdot \frac{L_1}{2}\right)}{\frac{1}{2}}$

$$\varrho_{c} := 1.0 \qquad E_{c} := 1.0$$

$$= \frac{E_{cc} \cdot Lcc + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{1 + \frac{1}{2}}$$

$$vc = 284.6 \, lb \cdot ft^{-1}$$

$$vc = 284.6 \text{ lb} \cdot \text{ft}^{-1}$$
 $\frac{vc}{C_0} = 284.6 \text{ lb} \cdot \text{ft}^{-1}$

$$E_c = 448.4 \, lb \cdot ft^{-1}$$

$$E_c = 448.4 \, \text{lb} \cdot \text{ft}^{-1}$$
 $\frac{E_c}{C_c} = 448.4 \, \text{lb} \cdot \text{ft}^{-1}$

P1-3: 7/16" Sheathing w/ 8d nails @ 3" O.C.

Wind Capacity = 686 plf Seismic Capacity = 490 plf

Dead Load Resisting Overturning:

$$L_c := 3.42 \cdot ft$$

 $L_c := 3.42 \cdot ft$ Plate Height: $P_t := 10 \cdot ft$

$$W_c := (15 \cdot psf) \cdot 0 \cdot ft + (20 \cdot psf) \cdot Pt + (10psf) \cdot 6.5ft$$

$$DLRc := \frac{W_c \cdot L_c}{2}$$

$$DLRc = 453.15 lb$$

Chord Force:

$$CFc_w := \frac{vc \cdot L_c \cdot Pt}{C_o \cdot L_c}$$

$$CFc_w = 2846.04 \text{ lb}$$

$$CFc_{\rm w} = 2846.04 \, lb$$

$$CFc_w + CFcc_w = 3955.13 lb$$

$$CFc_s := \frac{E_c \cdot L_c \cdot Pt}{C_c \cdot L_c}$$

$$CFc_s = 4483.98 \text{ lb}$$

$$CFc_s = 4483.98 \text{ lb}$$

 $CFc_s + CFcc_s = 6539.01 \text{ lb}$

Holdown Force:

$$HDFc_w := CFc_w - 0.6 \cdot DLRc = 2574.15 lb$$

$$HDFc_w + HDFcc_w = 3497.61 lb$$

$$HDFc_s := CFc_s - (0.6 - 0.14S_{DS}) \cdot DLRc = 4282.21 \text{ lb}$$

$$HDFc_s + HDFcc_s = 6199.49 lb$$

Simpson HDU8 w/ SB7/8x24 anchor

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{DN} := 1.6$$

$$B_{NN} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{vc} = 0.57 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{o}} = 0.36 \text{ ft}$$

16d @ 4" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_{S} := 860 \cdot lb \qquad C_{D} := 1.6 \qquad Z_{B} := A_{S} \cdot C_{D} \qquad Z_{B} = 1376 \, lb$$

$$A_{S} := \frac{\left(Z_{B} \cdot C_{o}\right)}{V_{C}} = 4.83 \, ft \qquad \frac{\left(Z_{B} \cdot C_{o}\right)}{F} = 3.07 \, ft$$

5/8" A.B. @ 36" o.c.

WALL D:

Story Shear due to Wind:

$$V_{2W} = 15789.29 \, lb$$

$$F_2 = 12167.73 \, lb$$

Bldg Width in direction of Load: Lat:= 56.ft

$$L_{t} = 56 \cdot \text{ft}$$

$$L_1 := 24 \cdot ft$$

Shear Wall Length: Ld := $\left[5.5 + 9 + 4.92\left(\frac{9.83}{10}\right) + 8.5 + 30.5\right]$ ft = 58.34 ft

Percent full height sheathing:
$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

% = 100 Max Opening Height = 0ft-0in, Therefore $C_{\text{NM}} = 1.00$ per AF&PA SDPWS Table 4.3.3.5

 $\text{Wind Force: } vd := \frac{vdd \cdot Ldd + \left(\frac{0.6V_{2W}}{L_t} \cdot \frac{L_1}{2}\right)}{Ld}$ Seismic Force: $\rho := \frac{E_{dd} \cdot Ldd + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Ld}$

$$:= \frac{E_{dd} \cdot Ldd + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{L_d}$$

$$vd = 80.77 \, lb \cdot ft^{-1}$$

$$vd = 80.77 \, lb \cdot ft^{-1}$$
 $\frac{vd}{C_0} = 80.77 \, lb \cdot ft^{-1}$

$$E_d = 116.46 \, \text{lb} \cdot \text{ft}^{-1}$$

$$E_d = 116.46 \text{ lb} \cdot \text{ft}^{-1}$$
 $\frac{E_d}{C_o} = 116.46 \text{ lb} \cdot \text{ft}^{-1}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 364 plf Seismic Capacity = 260 plf

Dead Load Resisting Overturning:

$$L_d := 4.92 \cdot ft$$

$$L_d := 4.92 \cdot ft$$
 Plate Height: $Pt := 10 \cdot ft$

$$W_d := (15 \cdot psf) \cdot 0 \cdot ft + (20 \cdot psf) \cdot Pt + (10psf) \cdot 9.5ft$$

$$DLRd := \frac{W_d \cdot L_d}{2}$$
 DLRd = 725.71b

$$DLRd = 725.71b$$

Chord Force:

$$CFd_w := \frac{vd \cdot L_d \cdot Pt}{C_o \cdot L_d}$$

$$CFd_w = 807.67 lb$$

$$CFd_w = 807.67 \, lb$$

$$CFd_s := \frac{E_d \cdot L_d \cdot Pt}{C_o \cdot L_d}$$

$$CFd_s = 1164.61 \text{ lb}$$

$$CFd_s = 1164.61 \text{ lb}$$

$$CFd_w + CFdd_w = 1610.66 lb$$

$$CFd_s + CFdd_s = 2652.47 lb$$

Holdown Force:

$$HDFd_w := CFd_w - 0.6DLRd = 372.25 lb$$

$$HDFd_s := CFd_s - (0.6 - 0.14S_{DS}) \cdot DLRd = 841.49 lb$$

No Holdown Required

$$HDFd_w + HDFdd_w = 842.24 lb$$

 $Z_{N} := 102 \cdot lb \quad C_{D} := 1.6$

$$HDFd_s + HDFdd_s = 2082.23 lb$$

Simpson STHD10/RJ or HDU2 w/ SSTB16 anchor

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot \text{lb} \quad C_{NN} := 1.6$$

$$B_{NN} := \frac{\left(C_D \cdot Z_N \cdot C_o\right)}{V^d} = 2.02 \text{ ft} \qquad \frac{\left(C_D \cdot Z_N \cdot C_o\right)}{E} = 1.4 \text{ ft}$$

5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

Anchor Bolt Spacing (2018 NDS Table 12E)

 $A_{s} := 860 \cdot lb$ $C_{D} := 1.6$ $Z_{B} := A_{s} \cdot C_{D}$ $Z_{B} = 1376 \, lb$ As: = $\frac{(Z_B \cdot C_o)}{vd}$ = 17.04 ft $\frac{(Z_B \cdot C_o)}{F_o}$ = 11.82 ft

16d @ 16" o.c.

WALL E:

Story Shear due to Wind:

$$V_{2W} = 15789.29 \, lb$$

Story Shear due to Seismic: $F_2 = 12167.73 \text{ lb}$

$$F_2 = 12167.73 \, lb$$

Bldg Width in direction of Load:

$$L_{ta} := 56 \cdot \text{ft}$$

Distance between shear walls:

$$L_{\perp} := 24 \cdot \text{ft}$$
 $L_2 := 19 \text{ft}$

$$L_2 := 19ft$$

Shear Wall Length: Le :=
$$\left[3.875\left(\frac{7.75}{10}\right) + 7 + 13.583\right]$$
ft = 23.59 ft

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

Percent full height sheathing: $\% := \left(\frac{10 \cdot ft}{10 \cdot ft}\right) \cdot 100$ % = 100 Max Opening Height = 0ft-0in, Therefore $C_{\infty} := 1.00$ per AF&PA SDPWS Table 4.3.3.5

Wind Force: $ve := \frac{\frac{v.vv_{2W}}{L_t} \cdot \frac{L_1 + L_2}{2}}{\frac{L_1 + L_2}{2}}$

Seismic Force:
$$\rho:=1.0$$
 $E_e:=\frac{\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1 + L_2}{2}}{L_e}$

ve = 154.21 lb·ft⁻¹
$$\frac{\text{ve}}{\text{C}_{0}}$$
 = 154.21 lb·ft⁻¹

$$E_e = 138.64 \, \text{lb} \cdot \text{ft}^{-1}$$

$$E_e = 138.64 \, \text{lb} \cdot \text{ft}^{-1}$$
 $\frac{E_e}{C_o} = 138.64 \, \text{lb} \cdot \text{ft}^{-1}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 364 plf Seismic Capacity = 260 plf

<u>Dead Load Resisting Overturning:</u>

$$W_e \coloneqq (15 \cdot psf) \cdot 4 \cdot ft + (20 \cdot psf) \cdot Pt + (10psf) \cdot 0ft$$

DLRe :=
$$\frac{W_e \cdot L_e}{2}$$
 DLRe = 503.75 lb

$$DLRe = 503.75 \, lb$$

Chord Force:

$$\label{eq:cfe} \text{CFe}_w \coloneqq \frac{\text{ve-L}_e \cdot \text{Pt}}{\text{C}_o \cdot \text{L}_e} \qquad \qquad \text{CFe}_w = 1542.08 \text{ lb}$$

$$CFe_{w} = 1542.08 lb$$

$$CFe_{s} := \frac{E_{e} \cdot L_{e} \cdot Pt}{C_{o} \cdot L_{e}}$$

$$CFe_{s} = 1386.44 \text{ lb}$$

$$CFe_s = 1386.44 lb$$

Holdown Force:

$$HDFe_w := CFe_w - 0.6 \cdot DLRe = 1239.83 lb$$

$$HDFe_s := CFe_s - (0.6 - 0.14S_{DS}) \cdot DLRe = 1162.15 lb$$

Simpson LSTHD8/RJ or HDU2 w/ SSTB16 Anchor

Dead Load Resisting Overturning:

$$W_{\text{ex}} := (15 \cdot \text{psf}) \cdot 0 \cdot \text{ft} + (10 \cdot \text{psf}) \cdot \text{Pt} + (10 \text{psf}) \cdot 9.5 \text{ft}$$

DLRe :=
$$\frac{W_e \cdot L_e}{2}$$
 DLRe = 1324.34 lb

$$DLRe = 1324.34 lb$$

Chord Force:

$$CFe_{w} = 1542.08 \text{ lb}$$

$$CFe_s := \frac{E_e \cdot L_e \cdot Pt}{C_o \cdot L_e}$$

$$CFe_s = 1386.44 \text{ lb}$$

$$CFe_s = 1386.44 lb$$

Holdown Force:

$$\frac{\text{HDFe}}{\text{MACCOUNTED}} := \text{CFe}_{\text{W}} - 0.6 \cdot \text{DLRe} = 747.48 \text{ lb}$$

$$HDFe_s := CFe_s - (0.6 - 0.14S_{DS}) \cdot DLRe = 796.77 lb$$

No Holdown Required

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{DN} := 1.6$$

$$E_{PN} := \frac{\left(C_D \cdot Z_N \cdot C_o\right)}{ve} = 1.06 \text{ ft} \qquad \frac{\left(C_D \cdot Z_N \cdot C_o\right)}{E_e} = 1.18 \text{ ft}$$

16d @ 12" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

As: = 860·lb
$$C_D$$
: = 1.6 Z_B : = $A_s \cdot C_D$ Z_B = 1376 lb

As: = $\frac{\left(Z_B \cdot C_o\right)}{ve}$ = 8.92 ft $\frac{\left(Z_B \cdot C_o\right)}{E_o}$ = 9.92 ft

WALL F:

Story Shear due to Wind:

 $V_{4W} = 21112.27 lb$

Story Shear due to Seismic: $F_2 = 12167.73 \, lb$

Bldg Width in direction of Load: La:= 78.ft

$$L_t := 78 \cdot \text{ft}$$

Distance between shear walls:

$$L_{1} := 27.5 \cdot \text{ft}$$
 $L_{2} := 15 \text{ft}$

$$L_2 := 15 \text{ft}$$

Shear Wall Length: Lf := (6 + 13.167 + 14.167)ft = 33.33 ft

Percent full height sheathing: $\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$

% = 100

Max Opening Height = Oft-Oin, Therefore C_{∞} := 1.00 per AF&PA SDPWS Table 4.3.3.5

Wind Force: $vf := \frac{\frac{0.6V_{4W}}{L_t}.\frac{L_1+L_2}{2}}{I.f}$

Seismic Force:
$$\rho := 1.0 \qquad E_f := \frac{\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1 + L_2}{2}}{Lf}$$

$$vf = 103.53 \, lb \cdot ft^{-1}$$

$$vf = 103.53 \text{ lb·ft}^{-1}$$
 $\frac{vf}{C} = 103.53 \text{ lb·ft}^{-1}$

$$E_f = 69.61 \, lb \cdot ft^{-1}$$

$$E_f = 69.61 \text{ lb} \cdot \text{ft}^{-1}$$
 $\frac{E_f}{C_a} = 69.61 \text{ lb} \cdot \text{ft}^{-1}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 364 plf Seismic Capacity = 260 plf

Dead Load Resisting Overturning:

 $L_f := 6 \cdot ft$

Plate Height: Pt := 10-ft

 $W_f := (15 \cdot psf) \cdot 0 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 1ft$

 $DLRf := \frac{W_{f} L_{f}}{2}$ DLRf = 330 lb

Chord Force:

$$CFf_w := \frac{vf \cdot L_f \cdot Pt}{C_o \cdot L_f}$$

$$CFf_w = 1035.29 \text{ lb}$$

$$CFf_{w} = 1035.29 \text{ lb}$$

$$CFf_s := \frac{E_{f'}L_{f'}Pt}{C_{f'}L_{f'}}$$

$$CFf_s = 696.12 lb$$

$$CFf_{s} = 696.12 lb$$

Holdown Force:

$$HDFf_w := CFf_w - 0.6 \cdot DLRf = 837.29 lb$$

$$HDFf_s := CFf_s - (0.6 - 0.14S_{DS}) \cdot DLRf = 549.19 lb$$

No Holdown Required

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot \text{lb} \quad C_{D} := 1.6$$

$$B_{RN} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{\text{vf}} = 1.58 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{f}} = 2.34 \text{ ft}$$

16d @ 16" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

As:= 860·lb
$$C_D$$
:= 1.6 Z_B := $A_s \cdot C_D$ Z_B = 1376 lb
As:= $\frac{(Z_B \cdot C_o)}{vf}$ = 13.29 ft $\frac{(Z_B \cdot C_o)}{E_o}$ = 19.77 ft

WALL G:

Story Shear due to Wind:

$$V_{2W} = 15789.29 \, lb$$

Story Shear due to Seismic:

$$F_2 = 12167.73 \, lb$$

Bldg Width in direction of Load: $L_{th} = 56 \cdot ft$

$$L_t := 56 \cdot ft$$

Distance between shear walls:

$$L_{\lambda} := 13 \cdot \text{ft}$$
 $L_{\lambda} := 19 \text{ft}$

$$L_2 := 19ft$$

Shear Wall Length: Lg := $\left[14.583 + 6.667 + 5.25 + 3\left(\frac{6}{10}\right)\right]$ ft = 28.3 ft

Percent full height sheathing:
$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

% = 100 Max Opening Height = 0ft-0in, Therefore C_{∞} := 1.00 per AF&PA SDPWS Table 4.3.3.5

 $\text{Wind Force: } vg := \frac{\frac{0.6 V_{2W}}{L_t} \cdot \frac{L_1 + L_2}{2}}{L_\sigma}$ Seismic Force: $\rho := 1.0$ $E_g := \frac{\rho \cdot \frac{0.7 F_2}{L_t} \cdot \frac{L_1 + L_2}{2}}{L_g}$

$$\frac{\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1 + L_2}{2}}{L_t}$$

$$\frac{L_2}{L_2} = \frac{L_2}{L_2} = \frac{L_2}$$

$$vg = 95.64 \, lb \cdot ft^{-1}$$

$$vg = 95.64 \text{ lb·ft}^{-1}$$
 $\frac{vg}{C_0} = 95.64 \text{ lb·ft}^{-1}$

$$E_g = 85.99 \, lb \cdot ft^{-1}$$

$$E_g = 85.99 \, \text{lb·ft}^{-1}$$
 $\frac{E_g}{C_o} = 85.99 \, \text{lb·ft}^{-1}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 364 plf Seismic Capacity = 260 plf

<u>Dead Load Resisting Overturning:</u> $L_g := 3 \cdot ft$ Plate Height: $P_{\text{AAA}} := 10 \cdot ft$

$$L_g := 3 \cdot ft$$

$$W_g \coloneqq (15 \cdot psf) \cdot 0 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 6.5ft$$

DLRg :=
$$\frac{W_g \cdot L_g}{2}$$
 DLRg = 247.5 lb

$$DLRg = 247.5 lb$$

Chord Force:

$$CFg_w := \frac{vg \cdot L_g \cdot Pt}{C_o \cdot L_o}$$

$$CFg_w = 956.44 \, lb$$

$$CFg_w = 956.44 lb$$

$$CFg_s := \frac{E_g \cdot L_g \cdot Pt}{C_o \cdot L_o}$$

$$CFg_s = 859.91 \text{ lb}$$

$$CFg_s = 859.91 \text{ lb}$$

Holdown Force:

$$HDFg_w := CFg_w - 0.6 \cdot DLRg = 807.94 lb$$

$$HDFg_s := CFg_s - (0.6 - 0.14S_{DS}) \cdot DLRg = 749.71 lb$$

No Holdown Required

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{ND} := 1.6$$

$$B_{NN} := \frac{\left(C_D \cdot Z_N \cdot C_o\right)}{vg} = 1.71 \text{ ft} \qquad \frac{\left(C_D \cdot Z_N \cdot C_o\right)}{E_g} = 1.9 \text{ ft}$$

16d @ 16" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_{S} := 860 \cdot lb \qquad C_{D} := 1.6 \qquad Z_{BA} := A_{S} \cdot C_{D} \qquad Z_{B} = 1376 \, lb$$

$$A_{S} := \frac{\left(Z_{B} \cdot C_{o}\right)}{vg} = 14.39 \, ft \qquad \frac{\left(Z_{B} \cdot C_{o}\right)}{E_{g}} = 16 \, ft$$

WALL H:

Story Shear due to Wind:

$$V_{4W} = 21112.271b$$

Story Shear due to Seismic: $F_2 = 12167.73 \, lb$

$$F_2 = 12167.73 \, lb$$

Bldg Width in direction of Load: Lat. = 78.ft

$$L_{t} := 78 \cdot ft$$

Distance between shear walls:

$$L_1 := 9.5 \cdot \text{ft}$$
 $L_2 := 26 \text{ft}$

$$L_2 := 26 \text{ft}$$

Shear Wall Length: Lh := (19.583) ft = 19.58 ft

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

Percent full height sheathing: $\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$ % = 100 Max Opening Height = 0ft-0in, Therefore $C_{\text{NN}} := 1.00$ per AF&PA SDPWS Table 4.3.3.5

$$\begin{array}{c}
\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1 + L_2}{2} \\
\vdots = \frac{1 \text{ h}}{1 \text{ h}}
\end{array}$$

$$vh = 147.2 \, lb \cdot ft^{-1}$$

$$vh = 147.2 \text{ lb·ft}^{-1}$$
 $\frac{vh}{C_0} = 147.2 \text{ lb·ft}^{-1}$

$$E_h = 98.98 \, lb \cdot ft^{-1}$$

$$E_h = 98.98 \, \text{lb·ft}^{-1}$$
 $\frac{E_h}{C_0} = 98.98 \, \text{lb·ft}^{-1}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 364 plf Seismic Capacity = 260 plf

Dead Load Resisting Overturning:

$$W_h := (15 \cdot psf) \cdot 2 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 0ft$$

$$DLRh := \frac{W_{h} \cdot L_{h}}{2}$$

$$DLRh = 1272.89 \text{ lb}$$

$$DLRh = 1272.89 lb$$

Chord Force:

$$CFh_{w} := \frac{vh \cdot L_{h} \cdot Pt}{C_{0} \cdot L_{h}}$$
 $CFh_{w} = 1472.01 \text{ lb}$

$$CFh_{W} = 1472.01 \text{ lb}$$

$$CFh_{S} := \frac{E_{h} \cdot L_{h} \cdot Pt}{C_{o} \cdot L_{h}}$$

$$CFh_{S} = 989.77 \text{ lb}$$

$$CFh_{s} = 989.77 \, lb$$

Holdown Force:

$$HDFh_w := CFh_w - 0.6 \cdot DLRh = 708.27 lb$$

$$HDFh_s := CFh_s - (0.6 - 0.14S_{DS}) \cdot DLRh = 423 lb$$

No Holdown Required

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{DN} := 1.6$$

$$B_{NN} := \frac{\left(C_D \cdot Z_N \cdot C_o\right)}{vh} = 1.11 \text{ ft} \qquad \frac{\left(C_D \cdot Z_N \cdot C_o\right)}{E_h} = 1.65 \text{ ft}$$

16d @ 16" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_{SV} := 860 \cdot lb \qquad C_{DV} := 1.6 \qquad Z_{BA} := A_{S} \cdot C_{D} \qquad Z_{B} = 1376 \, lb$$

$$A_{SV} := \frac{\left(Z_{B} \cdot C_{o}\right)}{vh} = 9.35 \, ft \qquad \frac{\left(Z_{B} \cdot C_{o}\right)}{E_{b}} = 13.9 \, ft$$

WALL I:

Story Shear due to Wind:

 $V_{4W} = 21112.27 \, lb$

Story Shear due to Seismic:

 $F_2 = 12167.73 \, lb$

Bldg Width in direction of Load: Late: 78-ft

$$L_t := 78 \cdot \text{ft}$$

Distance between shear walls:

$$L_{\text{ab}} := 26 \cdot \text{ft}$$

Shear Wall Length: Li :=
$$\left[2.4.5 \left(\frac{9}{10}\right) + 9\right]$$
 ft = 17.1 ft

Percent full height sheathing: $\frac{\%}{10.9} = \left(\frac{10.9}{10.9}\right) \cdot 100$

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

% = 100

Max Opening Height = Oft-Oin, Therefore $C_{\alpha,\alpha} := 1.00$ per AF&PA SDPWS Table 4.3.3.5

 $\mbox{Wind Force:} \quad \mbox{vi} := \frac{\frac{0.6 V_{4W}}{L_t}.\frac{L_1}{2}}{\mbox{r}:}$

Seismic Force:
$$\rho := 1.0 \qquad E_i := \frac{\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}}{Li}$$

$$vi = 123.46 \text{ lb} \cdot \text{ft}^{-1}$$
 $\frac{vi}{C_2} = 123.46 \text{ lb} \cdot \text{ft}^{-1}$

$$E_i = 83.02 \, \text{lb} \cdot \text{ft}^{-1}$$

$$E_i = 83.02 \, lb \cdot ft^{-1}$$
 $\frac{E_i}{C_0} = 83.02 \, lb \cdot ft^{-1}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 364 plf Seismic Capacity = 260 plf

Dead Load Resisting Overturning:

$$L_i := 4.5 \cdot ft$$

Plate Height: Pt := 10.ft

$$W_i := (15 \cdot psf) \cdot 5.5 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot Oft$$

$$DLRi := \frac{W_i \cdot L_i}{2}$$

$$DLRi = 410.63 \text{ lb}$$

$$DLRi = 410.63 lb$$

Chord Force:

$$CFi_w := \frac{vi \cdot L_i \cdot Pt}{C_0 \cdot L_i}$$
 $CFi_w = 1234.64 \text{ lb}$

$$CFi_{w} = 1234.64 \text{ lb}$$

$$CFi_s := \frac{E_i \cdot L_i \cdot Pt}{C \cdot L_i}$$

$$CFi_s = 830.16 \text{ lb}$$

$$CFi_s = 830.16 lb$$

Holdown Force:

$$HDFi_w := CFi_w - 0.6 \cdot DLRi = 988.26 lb$$

$$HDFi_s := CFi_s - (0.6 - 0.14S_{DS}) \cdot DLRi = 647.33 lb$$

No Holdown Required

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot \text{lb} \quad C_{D} := 1.6$$

$$Z_{N} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{\text{vi}} = 1.32 \, \text{ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{i}} = 1.97 \, \text{ft}$$

16d @ 16" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_s := 860 \cdot lb$$
 $C_D := 1.6$ $Z_B := A_s \cdot C_D$ $Z_B = 1376 \, lb$

As:=
$$\frac{(Z_B \cdot C_o)}{v_i} = 11.14 \,\text{ft}$$
 $\frac{(Z_B \cdot C_o)}{F_i} = 16.58 \,\text{ft}$

Diapragm Shear Check:

Assume 2x DF Roof Framing, 7/16" Sheathing w/ 8d (0.131" x 2.5") nails, 6" o.c Edge nailing Unblocked Diapraghm Case 1 Wind Capacity = 322 plf & Seismic Capacity = 230 plf Unblocked Diapraghm Case 2-6 Wind Capacity = 237 plf & Seismic Capacity = 170 plf

Wall Lines AA:

$$vaa \cdot \frac{Laa}{51.5ft} = 46.43 \, lb \cdot ft^{-1}$$
 $E_{aa} \cdot \frac{Laa}{51.5ft} = 96.48 \, lb \cdot ft^{-1}$

$$E_{aa} \cdot \frac{Laa}{51.5ft} = 96.48 \, lb \cdot ft^{-1}$$

Wall Lines CC:

$$\operatorname{vcc} \cdot \frac{\operatorname{Lcc}}{37 \operatorname{ft}} = 72.48 \, \mathrm{lb} \cdot \mathrm{ft}^{-1}$$

$$vcc \cdot \frac{Lcc}{37ft} = 72.48 \, lb \cdot ft^{-1}$$
 $E_{cc} \cdot \frac{Lcc}{37ft} = 134.29 \, lb \cdot ft^{-1}$

Wall Lines BB:

$$vbb \cdot \frac{Lbb}{48ft} = 49.81 lb \cdot ft^{-1}$$

$$vbb \cdot \frac{Lbb}{48ft} = 49.81 lb \cdot ft^{-1}$$
 $E_{bb} \cdot \frac{Lbb}{48ft} = 103.52 lb \cdot ft^{-1}$

$$vdd \cdot \frac{Ldd}{42.5ft} = 63.1 \text{ lb} \cdot \text{ft}^{-1}$$

$$vdd \cdot \frac{Ldd}{42.5ft} = 63.1 lb \cdot ft^{-1}$$
 $E_{dd} \cdot \frac{Ldd}{42.5ft} = 116.91 lb \cdot ft^{-1}$

Wall Lines A:

$$\frac{\text{va} \cdot \text{La} - \text{vaa} \cdot \text{Laa}}{51.5 \text{ft}} = 43.36 \, \text{lb} \cdot \text{ft}^{-1} \qquad \frac{\text{E}_{\text{a}} \cdot \text{La} - \text{E}_{\text{aa}} \cdot \text{Laa}}{51.5 \text{ft}} = 29.15 \, \text{lb} \cdot \text{ft}^{-1} \qquad \frac{\text{va} \cdot \text{La}}{51.5 \text{ft}} = 89.79 \, \text{lb} \cdot \text{ft}^{-1} \qquad \frac{\text{E}_{\text{a}} \cdot \text{La}}{51.5 \text{ft}} = 125.63 \, \text{lb} \cdot \text{ft}^{-1}$$

$$\frac{E_{a} \cdot La - E_{aa} \cdot Laa}{51.5 \text{ft}} = 29.15 \text{ lb} \cdot \text{ft}$$

$$\frac{\text{va} \cdot \text{La}}{51.50} = 89.79 \,\text{lb} \cdot \text{ft}^{-1}$$

$$\frac{E_a \cdot La}{51.5 \text{ft}} = 125.63 \text{ lb} \cdot \text{ft}^{-1}$$

Wall Lines B:

$$\frac{\text{vb} \cdot \text{Lb} - \text{vbb} \cdot \text{Lbb}}{24 \text{ft}} = 82.89 \, \text{lb} \cdot \text{ft}^{-1} \qquad \frac{\text{E}_{\text{b}} \cdot \text{Lb} - \text{E}_{\text{bb}} \cdot \text{Lbb}}{24 \text{ft}} = 55.74 \, \text{lb} \cdot \text{ft}^{-1} \qquad \frac{\text{vb} \cdot \text{Lb}}{37 \text{ft}} = 118.39 \, \text{lb} \cdot \text{ft}^{-1} \qquad \frac{\text{E}_{\text{b}} \cdot \text{Lb}}{37 \text{ft}} = 170.44 \, \text{lb} \cdot \text{ft}^{-1}$$

$$\frac{E_b \cdot Lb - E_{bb} \cdot Lbb}{24ft} = 55.74 \, lb \cdot ft^{-1}$$

$$\frac{\text{vb} \cdot \text{Lb}}{37 \text{ft}} = 118.39 \, \text{lb} \cdot \text{ft}^{-1}$$

$$\frac{E_b \cdot Lb}{37ft} = 170.44 \, lb \cdot ft^{-1}$$

Wall Lines C:

$$\frac{\text{vc·Lc} - \text{vcc·Lcc}}{42.5 \text{ft}} = 25.87 \text{lb·ft}^{-1}$$

$$\frac{\text{vc-Lc} - \text{vcc-Lcc}}{42.5 \text{ft}} = 25.87 \text{lb-ft}^{-1}$$

$$\frac{\text{E}_{\text{c}} \cdot \text{Lc} - \text{E}_{\text{cc}} \cdot \text{Lcc}}{42.5 \text{ft}} = 23.26 \text{lb-ft}^{-1}$$

$$\frac{\text{vc-Lc}}{42.5 \text{ft}} = 88.97 \text{lb-ft}^{-1}$$

$$\frac{\text{E}_{\text{c}} \cdot \text{Lc}}{42.5 \text{ft}} = 140.17 \text{lb-ft}^{-1}$$

$$\frac{\text{vc·Lc}}{42.5 \text{ft}} = 88.97 \text{lb·ft}^{-1}$$

$$\frac{E_c \cdot Lc}{42.5 ft} = 140.17 \, lb \cdot ft^{-1}$$

Wall Lines D:

$$\frac{\text{vd} \cdot \text{Ld} - \text{vdd} \cdot \text{Ldd}}{78 \text{ft}} = 26.03 \, \text{lb} \cdot \text{ft}^{-1} \qquad \frac{\text{E}_{\text{d}} \cdot \text{Ld} - \text{E}_{\text{dd}} \cdot \text{Ldd}}{78 \, \text{ft}}}{28 \, \text{ft}} = 23.4 \, \text{lb} \cdot \text{ft}^{-1} \qquad \frac{\text{vd} \cdot \text{Ld}}{78 \, \text{ft}} = 60.41 \, \text{lb} \cdot \text{ft}^{-1} \qquad \frac{\text{E}_{\text{d}} \cdot \text{Ld}}{78 \, \text{ft}} = 87.1 \, \text{lb} \cdot \text{ft}^{-1}$$

$$\frac{E_{d} \cdot Ld - E_{dd} \cdot Ldd}{200} = 23.4 \text{ lb} \cdot \text{ft}$$

$$\frac{\text{vd} \cdot \text{Ld}}{78 \text{ft}} = 60.41 \text{ lb} \cdot \text{ft}^{-1}$$

$$\frac{E_d \cdot Ld}{78ft} = 87.1 \text{ lb} \cdot \text{ft}^{-1}$$

Wall Line E:

$$\frac{\text{ve-Le}}{78 \,\text{ft}} = 46.63 \,\text{lb-ft}^{-1}$$

$$\frac{\text{ve-Le}}{78 \text{ft}} = 46.63 \text{ lb-ft}^{-1}$$
 $\frac{\text{E}_{\text{e}} \cdot \text{Le}}{78 \text{ft}} = 41.92 \text{ lb-ft}^{-1}$

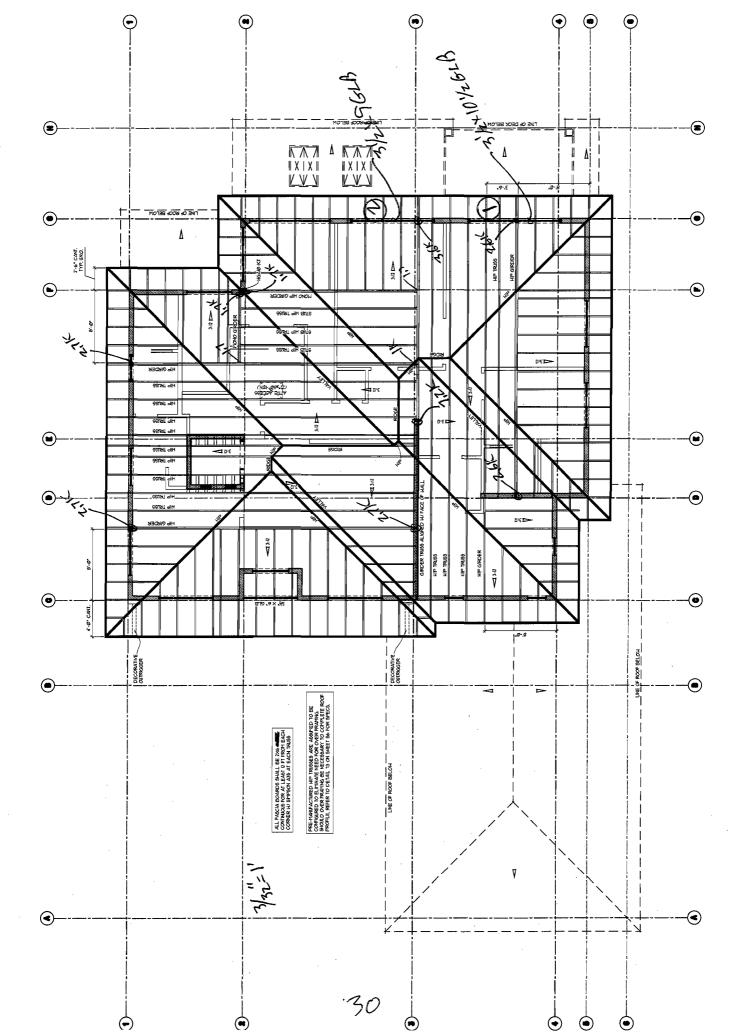
Wall Line H:

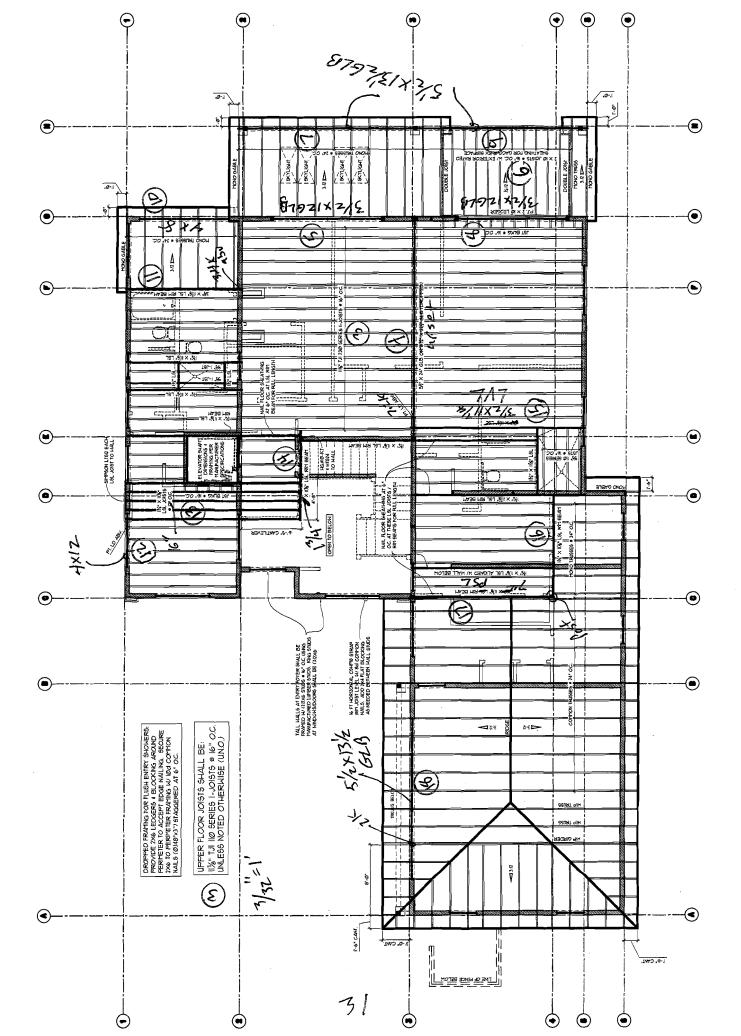
$$\frac{\text{vh} \cdot \text{Lh}}{24 \text{ft}} = 120.11 \, \text{lb} \cdot \text{ft}^{-1}$$
 $\frac{\text{E}_{\text{h}} \cdot \text{Lh}}{24 \text{ft}} = 80.76 \, \text{lb} \cdot \text{ft}^{-1}$

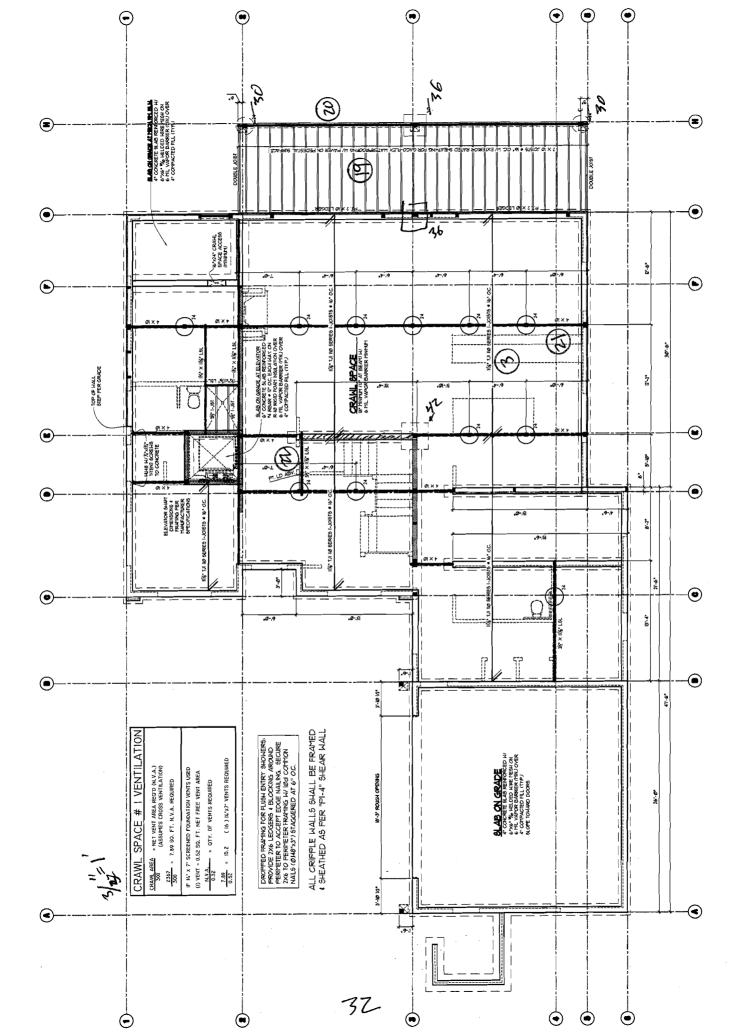
Wall Line F:

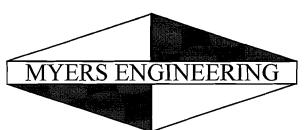
$$\frac{\text{vf} \cdot \text{Lf}}{51.5 \text{ft}} = 67.01 \, \text{lb} \cdot \text{ft}^{-}$$

$$\frac{\text{vf} \cdot \text{Lf}}{51.5 \text{ft}} = 67.01 \,\text{lb} \cdot \text{ft}^{-1}$$
 $\frac{\text{E}_{\text{f}} \cdot \text{Lf}}{51.5 \text{ft}} = 45.06 \,\text{lb} \cdot \text{ft}^{-1}$

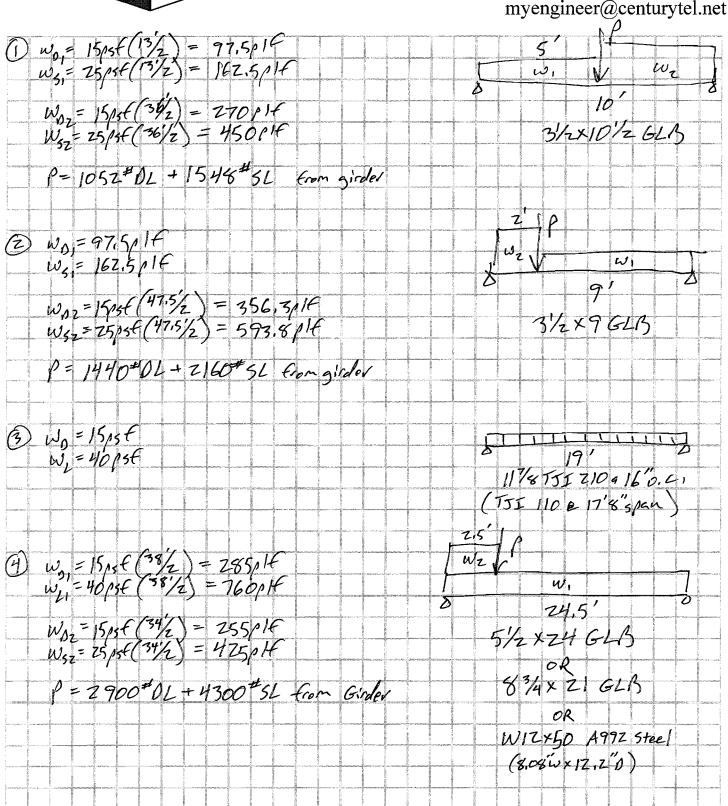

Wall Line I:


$$\frac{\text{vi} \cdot \text{Li}}{24\text{ft}} = 87.97 \,\text{lb} \cdot \text{ft}^{-1}$$
 $\frac{\text{E}_{\text{i}} \cdot \text{Li}}{24\text{ft}} = 59.15 \,\text{lb} \cdot \text{ft}^{-1}$

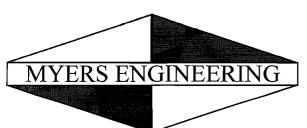

Wall Line G:


$$\frac{\text{vg} \cdot \text{Lg}}{42.5 \text{ft}} = 63.69 \,\text{lb} \cdot \text{ft}^{-1}$$
 $\frac{\text{E}_{\text{g}} \cdot \text{Lg}}{42.5 \text{ft}} = 57.26 \,\text{lb} \cdot \text{ft}^{-1}$

$$\frac{E_g \cdot Lg}{42.5 ft} = 57.26 \, \text{lb} \cdot \text{ft}^{-1}$$



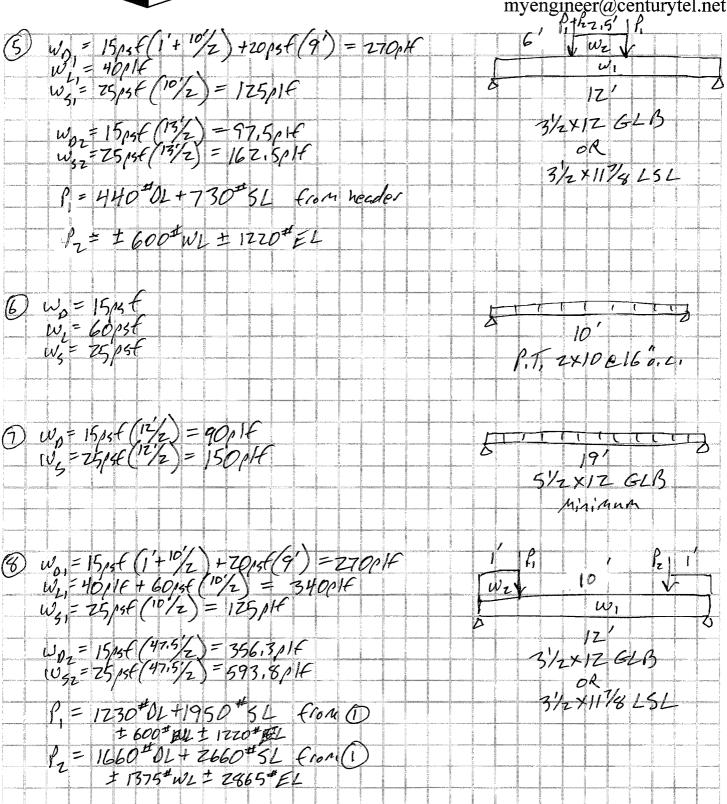
Myers Engineering LLC 3206 50th St Ct NW, Ste 210-B Gig Harbor, WA 98335 (253) 858-3248

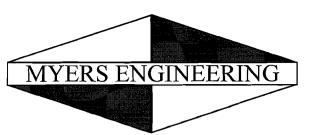

Fax (253) 858-3249

myengineer@centurytel.net

FOR RFA/RKK JOB Masin

DATE 10-20-21

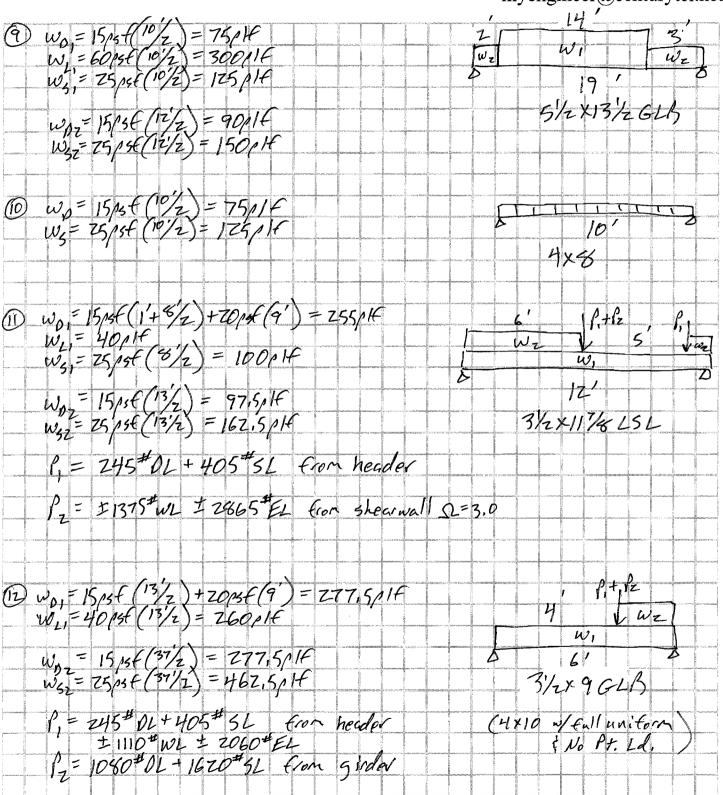


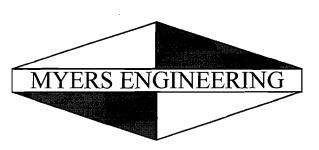

Myers Engineering LLC 3206 50th St Ct NW, Ste 210-B Gig Harbor, WA 98335

> (253) 858-3248 Fax (253) 858-3249

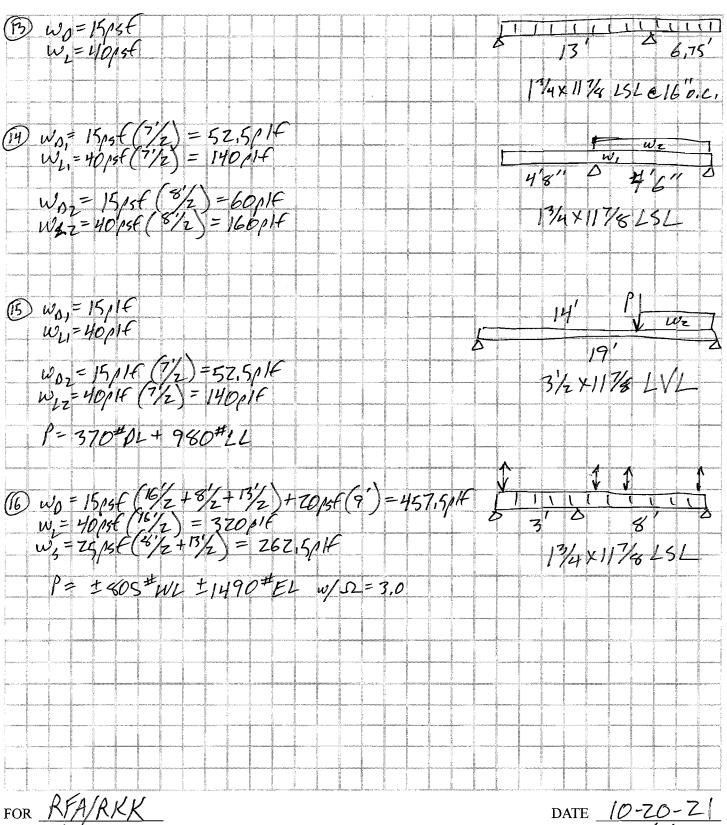
myengineer@centurytel.net

DATE 10-20-21

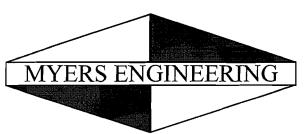




FOR RFA/RKK

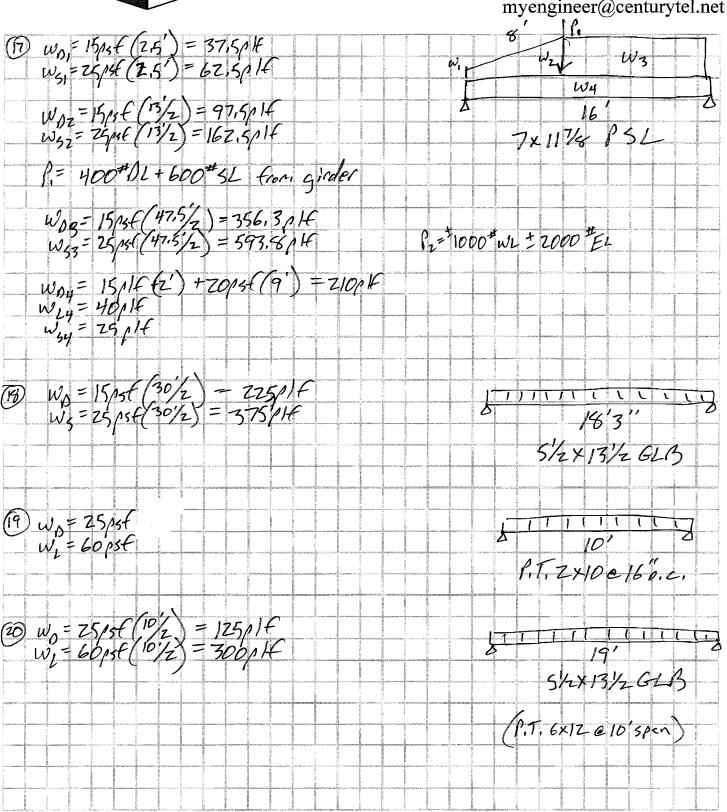

Myers Engineering LLC 3206 50th St Ct NW, Ste 210-B Gig Harbor, WA 98335 (253) 858-3248 Fax (253) 858-3249 myengineer@centurytel.net

DATE 10-70-Z

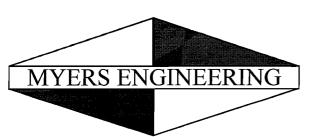


Myers Engineering LLC 3206 50th St Ct NW, Ste 210-B Gig Harbor, WA 98335 (253) 858-3248 Fax (253) 858-3249 myengineer@centurytel.net

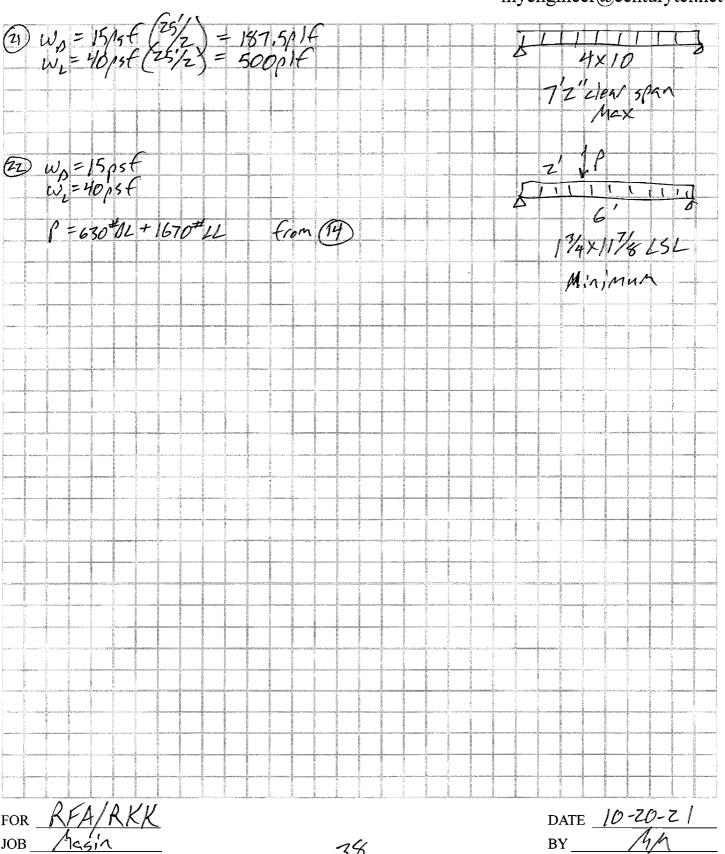
36

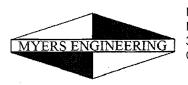

FOR RFA/RKK

Myers Engineering LLC 3206 50th St Ct NW, Ste 210-B Gig Harbor, WA 98335 (253) 858-3248


Fax (253) 858-3249

myengineer@centurytel.net


DATE 10-20-21 BY 4/h



37

Myers Engineering LLC 3206 50th St Ct NW, Ste 210-B Gig Harbor, WA 98335 (253) 858-3248 Fax (253) 858-3249 myengineer@centurytel.net

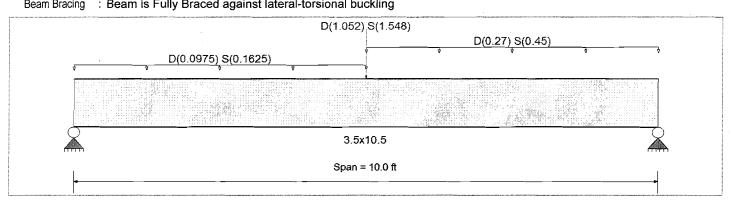
Wood Beam

File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5.31 MYERS ENGINEERING

Lic.#: KW-06008232

DESCRIPTION: 1. Header at Master/Deck


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

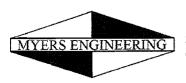
Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	2,400.0 psi	E : Modulus of Elasti	icity
Load Combination 1BC 2018	Fb-	1,850.0 psi	Ebend- xx	1,800.0 ksi
	Fc - Prll	1,650.0 psi	Eminbend - xx	950.0 ksi
Wood Species : DF/DF	Fc - Perp	650.0 psi	Ebend- yy	1,600.0 ksi
Wood Grade : 24F-V4	Fv	265.0 psi	Eminbend - yy	850.0 ksi
	Ft	1,100.0 psi	Density	31.210 pcf
Poom Bracing : Room is Fully Braced against lateral fore	sional buckling		•	•

Applied Loads

Service loads entered. Load Factors will be applied for calculations.


Load for Span Number 1

 $\begin{array}{ll} \mbox{Uniform Load}: \ D=0.09750, \ S=0.1625 \ \mbox{k/ft, Extent} = 0.0 \ \mbox{-->>} 5.0 \ \mbox{ft, Tributary Width} = 1.0 \ \mbox{ft} \\ \mbox{Uniform Load}: \ D=0.270, \ S=0.450 \ \mbox{k/ft, Extent} = 5.0 \ \mbox{-->>} 10.0 \ \mbox{ft, Tributary Width} = 1.0 \ \mbox{ft} \\ \mbox{New Model of the content of$

Point Load : D = 1.052, S = 1.548 k @ 5.0 ft

DESIGN SUMMARY				4.8	Design OK
Maximum Bending Stress Ratio Section used for this span	=		ximum Shear Stress Ratio	=	0.498 : 1
Section used for this span	=	3.5x10.5 2,355.69psi	Section used for this span	_	3.5x10.5 151.86 psi
	_	2,760.00psi		=	304.75 psi
Load Combination	_	+D+S	Load Combination	-	+D+S
Location of maximum on span	=	5.000ft	Location of maximum on span	=	9.161 ft
Span # where maximum occurs	=	Span #1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Defle	ction	0.206 in Ratio =	581 >=360		
Max Upward Transient Deflection	n	0.000 in Ratio =	0<360		
Max Downward Total Deflection		0.337 in Ratio =	355>=240		
Max Upward Total Deflection		0.000 in Ratio =	0<240		

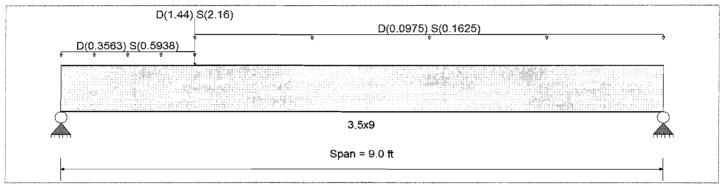
Vertical Reactions		Support i	notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2			
Overall MAXimum	3.175	4.325			
Overall MINimum	1.946	2.665			
D Only	1.229	1.660			
+D+L	1.229	1.660			
+D+S	3.175	4.325			
+D+0.750L	1.229	1.660			
+D+0.750L+0.750S	2.689	3.659			
+0.60D	0.737	0.996			
S Only	1.946	2.665			

Wood Beam Lic. #: KW-06008232 File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20.5.31 MYERS ENGINEERING

DESCRIPTION: 2. Header at Den

CODE REFERENCES


Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb +	2,400.0 psi	E : Modulus of Elasti	icity
Load Combination IBC 2018	Fb -	1,850.0 psi	Ebend- xx	1,800.0 ksi
	Fc - Prll	1,650.0 psi	Eminbend - xx	950.0 ksi
Wood Species : DF/DF	Fc - Perp	650.0 psi	Ebend- yy	1,600.0 ksi
Wood Grade : 24F-V4	Fv .	265.0 psi	Eminbend - yy	850.0 ksi
vvood Grade , 2 ii v i	Ft	1,100.0 psi	Density	31.210 pcf

: Beam is Fully Braced against lateral-torsional buckling

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Load for Span Number 1

Uniform Load: D = 0.3563, S = 0.5938 k/ft, Extent = 0.0 -->> 2.0 ft, Tributary Width = 1.0 ft Uniform Load: D = 0.09750, S = 0.1625 k/ft, Extent = 2.0 ->> 9.0 ft, Tributary Width = 1.0 ft

Point Load: D = 1.440, S = 2.160 k @ 2.0 ft

DES	IGN	SII	MA	IΔ	RY
ULS		JU	<i>!V! !V</i>		α

DESIGN SUMMARY			:		Design OK
Maximum Bending Stress Ratio Section used for this span	=	3.5x9 2,156.79psi	eximum Shear Stress Ratio Section used for this span	=	0.705 : 1 3.5x9 214.78 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	2,760.00 psi +D+S 2.004 ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	= = =	304.75 psi +D+S 0.000 ft Span # 1
Maximum Deflection Max Downward Transient Deflectio Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection		0.176 in Ratio = 0.000 in Ratio = 0.289 in Ratio = 0.000 in Ratio =	611 >=360 0 <360 374 >=240 0 <240		

Vertical Reactions		Support notation	n : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2			
Overall MAXimum	5.197	2.123		_	
Overall MINimum	3.178	1.307			
D Only	2.019	0.816			
+D+L	2.019	0.816			
+D+S	5.197	2.123			
+D+0.750L	2.019	0.816			
+D+0.750L+0.750S	4.402	1.797			
+0.60D	1,211	0.490			
S Only	3.178	1.307			

FLOOR SPAN TABLES

L/480 Live Load Deflection

		40 PS	Flive Load /	10 PSF Dear	hsnih	40 PS	F Live Load	20 PSF Dea	l Load
Depth	TJ ®	12" o.c.	16" o.c.	19.2" o.c.		12" o.c.	16" o.c.	19.2" o.c.	24" o.c.
	110	16'-11"	15'-6"	14'-7"	13'-7"	16'-11"	15'-6"	14'-3"	12'-9"
9½"	210	17'-9"	16'-3"	15'-4"	14'-3"	17'-9"	16'-3"	15'-4"	14'-0"
	230	18'-3"	16'-8"	15'-9"	14'-8"	18'-3"	16'-8"	15'-9"	14'-8"
	110	20'-2"	18'-5"	17'-4"	15'-9"(1)	20'-2"	(17'-8")	16'-1"(1)	14'-4"(1)
	210	21'-1"	19'-3"	18'-2"	16'-11"	21'-1"	(19'-3")	17'-8"	15'-9"(1)
117/8"	230	21'-8"	19'-10"	18'-8"	17'-5"	21'-8"	19'-10"	18'-7"	16'-7" ⁽¹⁾
	360	22'-11"	20'-11"	19'-8"	18'-4"	22'-11"	20'-11"	19'-8"	17'-10"(1)
	560	26'-1"	23'-8"	.22'-4"	20'-9"	26'-1"	23'-8"	22'-4"	20'-9"(1)
	1.10	22'-10,"	20'-11"	19'-2"	17'-2"(1)	22'-2"	19'-2"	17'-6"(1)	15'-0"(1)
	210	23'-11"	21'-10"	20'-8"	18'-10" ⁽¹⁾	23'-11"	21'-1"	19'-2"(1)	16'-7"(1)
14"	230	24'-8"	22'-6"	21'-2"	19'-9"(1)	24'-8"	22'-2"	20'-3"(1)	17'-6"(1)
	360	26'-0"	23'-8"	22'-4"	20'-9"(1)	26'-0"	23'-8"	22'-4"(1)	17'-10" ⁽¹⁾
İ	560	29'-6"	26'-10"	25'-4"	23'-6"	29'-6"	<i>26'-10"</i>	25'-4"(1)	20'-11"(1)
	110	25'-4"	22'-6"	20'-7"(1)	18'-1"(1)	23'-9"	20'-7"(1)	18'-9"(1)	15'-0"(1)
	210	26'-6"	24'-3"	22'-6" ⁽¹⁾	19'-11" ⁽¹⁾	26'-0"	22'-6"(1)	20'-7"(1)	16'-7" ⁽¹⁾
16"	230	27'-3"	24'-10"	23'-6"	21'-1"(1)	27'-3"	23'-9"	21'-8"(1)	17¹-6" ⁽¹⁾
ĺ	360	28'-9"	26'-3"	24'-8"(1)	21'-5"(1)	28'-9"	26'-3" ⁽¹⁾	22'-4"(1)	17 '- 10" ⁽¹⁾
ĺ	560	32'-8"	29'-8"	28'-0"	25'-2"(1)	32'-8"	29'-8"	· 26'-3"(1)	20'-11" ⁽¹⁾

L/360 Live Load Deflection (Minimum Criteria per Code)

D 11	THE	40 PS	F Live Load	/ 10 PSF Dea	d Load	40 PS	F Live Load /	20 PSF Dear	d Load
Depth TJI®		12" o.c.	16" o.c.	19.2" o.c.	24" o.c.	12" o.c.	16" o.c.	19.2" o.c.	24" o.c.
	110.	18'-9"	17'-2"	15'-8"	14'-0"	18'-1"	15'-8"	14'-3"	12'-9"
9½"	210	19'-8"	18'-0"	17'-0"	15'-4"	19'-8"	17'-2"	15'-8"	14'-0"
	230	20'-3"	18'-6"	17'-5"	16'-2"	20'-3"	18'-1"	16'-6"	14'-9"
	110	22'-3"	19'-4"	17'-8"	15'-9" ⁽¹⁾	20'-5"	17'-8"	16'-1"(1)	14'-4"(1)
,	210	23'-4"	21'-2"	19'-4"	17'-3" ⁽¹⁾	22'-4"	19'-4"	17'-8"	15'-9"(1)
117/8"	230	24'-0"	21'-11"	20'-5"	18'-3"	23'-7"	20'-5"	18'-7"	16'-7" ⁽¹⁾
	360	25'-4"	23'-2"	21'-10"	20'-4"(1)	25'-4"	23'-2"	21'-10" ⁽¹⁾	17'-10" ⁽¹⁾
	560	28'-10"	26'-3"	24'-9"	23'-0"	28'-10"	26'-3"	24'-9"	20'-11"(1)
	110	24'-4"	21'-0"	19'-2"	17'-2"(1)	22'-2"	19'-2"	17'-6"(1)	15 '- 0" ⁽¹⁾
[210	26'-6"	23'-1"	21'-1"	18'-10" ⁽¹⁾	24'-4"	21'-1"	19'-2" ⁽¹⁾	16'-7" ⁽¹⁾
14"	230	27'-3"	24'-4"	22'-2"	19'-10" ⁽¹⁾	25'-8"	22'-2"	20'-3"(1)	17'-6"(1)
[360	28'-9"	26'-3"	24'-9"(1)	21'-5"(1)	28'-9"	26'-3" ⁽¹⁾	22'-4"(1)	17'-10"(1)
ĺ	560	32'-8"	29'-9"	28'-0"	25'-2"(1)	32'-8"	29'-9"	26'-3" ⁽¹⁾	20'-11"(1)
	110	26'-0"	22'-6"	20'-7"(1)	18'-1"(1)	23'-9"	20'-7"(1)	18'-9"(1)	15'-0"(1)
	210	28'-6"	24'-8"	22'-6"(1)	19'-11"(1)	26'-0"	22'-6"(1)	20'-7"(1)	16'-7" ^(I)
16"	230	30'-1"	26'-0"	23'-9"	21'-1"(1)	27'-5"	23'-9"	21'-8"(1)	17'-6"(1)
[360	31'-10"	29'-0"	26'-10" ⁽¹⁾	21'-5" ⁽¹⁾	31'-10"	26'-10" ⁽¹⁾	22'-4"(1)	17'-10"(1)
	560	36'-1"	32'-11"	31'-0" ⁽¹⁾	25'-2" ⁽¹⁾	36'-1"	31'-6" ⁽¹⁾	26'-3"(1)	20'-11"(1)

(1) Web stiffeners are required at intermediate supports of continuous-span joists when the intermediate bearing length is *less* than 5¼" and the span on either side of the intermediate bearing is greater than the following spans:

TJI®	40 PS	SF Live Load	/ 10 PSF Dead	Load	40 PSF Live Load / 20 PSF Dead Load				
1,110	12" o.c.	16" o.c.	19.2" o.c.	24" o.c.	12" o.c.	16" o.c.	19.2" o.c.	24" o.c.	
110			19'-2"	15'-4"		19'-2"	16'-0"	12'-9"	
210			21'-4"	17'-0"		21'-4"	17'-9"	14'-2"	
230	Not Req.	Not Req.	Not Req.	19'-2"	Not Req.	Not Req.	19'-11"	15'-11"	
360			24'-5"	19'-6"		24'-5"	20'-4"	16'-3"	
560			29'-10"	23'-10"		29'-10"	24'-10"	19'-10"	

Long-term deflection under dead load, which includes the effect of creep, has not been considered. Bold italic spans reflect
initial dead load deflection exceeding 0.33".

How to Use These Tables

- 1. Determine the appropriate live load deflection criteria.
- 2. Identify the live and dead load condition.
- 3. Select on-center spacing.
- 4. Scan down the column until you meet or exceed the span of your application.
- 5. Select TJI® joist and depth.

General Notes

- Tables are based on:
- Uniform loads.
- More restrictive of simple or continuous span.
- Clear distance between supports
- Minimum bearing length of 1¾" end (no web stiffeners) and 3½" intermediate.
- Assumed composite action with a single layer of 24" on-center span-rated, glue-nailed floor panels for deflection only. When subfloor adhesive is not applied, spans shall be reduced 6" for nails and 12" for proprietary fasteners.
- For continuous spans, ratio of short span to long span should be 0.4 or greater to prevent uplift.
- Spans generated from Weyerhaeuser software may exceed the spans shown in these tables because software reflects actual design conditions.
- For multi-family applications and other loading conditions not shown, refer to Weyerhaeuser software or to the load table on page 8.

Live load deflection is not the only factor that affects how a floor will perform. To more accurately predict floor performance, use our TJ-Pro™ Ratings.

These Conditions Are NOT Permitted:

DO NOT use sawn lumber for rim board or blocking as it may shrink after installation. Use only engineered lumber

DO NOT bevel cut joist beyond inside face of wall.

DO NOT install hanger overhanging face of plate or beam. Flush bearing plate with inside face of wall or beam.

Wood Beam

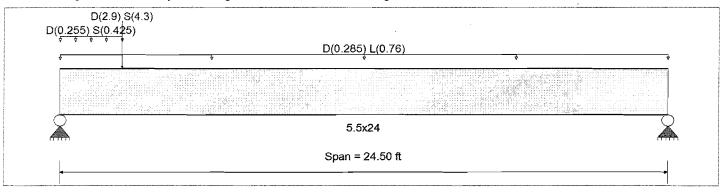
File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build-12.20.5.31
MYERS ENGINEERING

Lic.#: KW-06008232

DESCRIPTION: 4. Floor Beam at Grid 3 (Wood)

CODE REFERENCES


Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

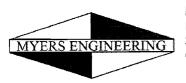
Material Properties

£ 2,400.0 psi E : Modulus of Elasticity
1,850.0 psi Ebend- xx 1,800.0 ksi
Prll 1,650.0 psi Eminbend - xx 950.0 ksi
Perp 650.0 psi Ebend- yy 1,600.0 ksi
265.0 psi Eminbend - yy 850.0 ksi
1,100.0 psi Density 31.210 pcf
-

Beam Bracing : Beam is Fully Braced against lateral-torsional buckling

Applied Loads

Service loads entered. Load Factors will be applied for calculations.


Uniform Load: D = 0.0150, L = 0.040 ksf, Tributary Width = 19.0 ft

Uniform Load: D = 0.2550, S = 0.4250 k/ft, Extent = 0.0 ->> 2.50 ft, Tributary Width = 1.0 ft

Point Load: D = 2.90, S = 4.30 k @ 2.50 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	=	0.856 1 Ma	aximum Shear Stress Ratio	=	0.577 : 1
Section used for this span		5.5x24	Section used for this span		5.5x24
	=	1,874.58psi		=	152.88 psi
	=	2,189.51 psi		=	265.00 psi
Load Combination		+D+L	Load Combination		+D+L
Location of maximum on span	=	11.892ft	Location of maximum on span	=	0.000 ft
Span # where maximum occurs	=	Span # 1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Deflec	tion	0.543 in Ratio =	541 >=360		
Max Upward Transient Deflection	1	0.000 in Ratio =	0 < 360		
Max Downward Total Deflection		0.793 in Ratio =	370>=240		
Max Upward Total Deflection		0.000 in Ratio =	0 < 240		

Vertical Reactions		Support notation : Far left is #1		Values in KIPS	
Load Combination	Support 1	Support 2			
Overall MAXimum	17.335	13.130			
Overall MINimum	4.870	0.493			
D Only	6.700	3.820			
+D+L	16.010	13.130			
+D+\$	11.570	4.313			
+D+0.750L	13.683	10.802			
+D+0.750L+0.750S	17.335	11.172			
+0.60D	4.020	2.292			
L Only	9.310	9.310			
S Only	4.870	0.493			

Wood Beam

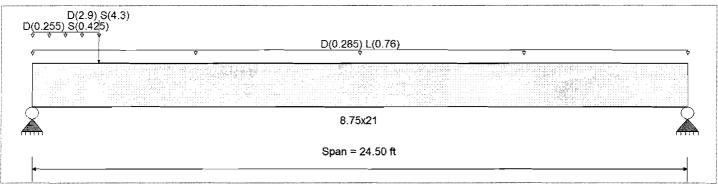
File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31.
MYERS ENGINEERING

Lic. # : KW-06008232

DESCRIPTION: 4. Floor Beam at Grid 3 (Wood)

CODE REFERENCES


Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

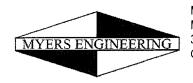
Material Properties

Analysis Method: Allowable Stress Design	Fb +	2,400.0 psi	E : Modulus of Elasti	icity
Load Combination IBC 2018	Fb -	1,850.0 psi	Ebend- xx	1,800.0 ksi
	Fc - Prll	1,650.0 psi	Eminbend - xx	950.0 ksi
Wood Species : DF/DF	Fc - Perp	650.0 psi	Ebend- yy	1,600.0ksi
Wood Grade : 24F-V4	Fv	265.0 psi	Eminbend - yy	850.0ksi
Wood Glade , 241 V	Ft	1,100.0 psi	Density	31.210 pcf

Beam Bracing : Beam is Fully Braced against lateral-torsional buckling

Applied Loads

Service loads entered. Load Factors will be applied for calculations.


Uniform Load : D = 0.0150, L = 0.040 ksf, Tributary Width = 19.0 ft

Uniform Load: D = 0.2550, S = 0.4250 k/ft, Extent = 0.0 -->> 2.50 ft, Tributary Width = 1.0 ft

Point Load: D = 2.90, S = 4.30 k @ 2.50 ft

DESIGN SUMMARY				400	Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.727. 1 Ma 8.75x21 1,539.02psi	aximum Shear Stress Ratio Section used for this span	= ,	0.425 : 1 8.75x21 112.67 psi
	=	2,118.27psi		=	265.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	=	+D+L 11.892ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+L 0.000 ft Span # 1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	n	0.510 in Ratio = 0.000 in Ratio = 0.744 in Ratio = 0.000 in Ratio =	576 >=360 0 <360 395 >=240 0 <240		

Vertical Reactions		Support not	ation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2			
Overall MAXimum	17.335	13.130	 :		
Overall MINimum	4.870	0.493			
D Only	6.700	3.820			
+D+L	16.010	13.130			
+D+S	11.570	4.313			
+D+0.750L	13.683	10.802			
+D+0.750L+0.750S	17.335	11.172	•		
+0.60D	4.020	2.292			
L Only	9.310	9.310			
S Only	4.870	0.493			

Steel Beam Lic.#: KW-06008232 File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31
MYERS ENGINEERII

DESCRIPTION: 4a. Floor Beam at Grid 3 (Steel)

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Strength Design

Beam Bracing: Completely Unbraced

Major Axis Bending Bending Axis:

Fy: Steel Yield:

50.0 ksi

E: Modulus :

29,000.0 ksi

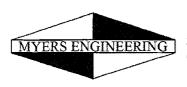
Applied Loads

Service loads entered. Load Factors will be applied for calculations.

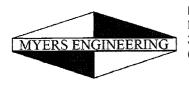
Beam self weight NOT internally calculated and added

Uniform Load: D = 0.0150, L = 0.040 ksf, Tributary Width = 19.0 ft

Uniform Load: D = 0.2550, S = 0.4250 k/ft, Extent = 0.0 -->> 2.50 ft, Tributary Width = 1.0 ft


Point Load: D = 2.90, S = 4.30 k @ 2.50 ft

DESIGN SUMMARY


		Dooligii Oit
0.674:1	Maximum Shear Stress Ratio =	0.200 : 1
W12x50	Section used for this span	W12x50
82.482 k-ft	Va : Applied	18.038 k
122.373 k-ft	Vn/Omega : Allowable	90.280 k
+D+L 11.970ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	+1.105D+0.750L+0.750S 0.000 ft Span # 1
0.000 in Ratio 0.796 in Ratio	= 0 <480.0 = 369 >=360.	
	W12x50 82.482 k-ft 122.373 k-ft +D+L 11.970ft Span # 1 0.546 in Ratio 0.000 in Ratio 0.796 in Ratio	W12x50 Section used for this span 82.482 k-ft Va : Applied 122.373 k-ft Vn/Omega : Allowable +D+L Load Combination 11.970ft Location of maximum on span Span # 1 Span # where maximum occurs 0.546 in Ratio = 538 >=480. 0.000 in Ratio = 0 <480.0

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
+D+L	1	0.7963	12.180		0.0000	0.000
Vertical Reactions			Suppor	t notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2			_	
Overall MAXimum	17.335	13.130				
Overall MINimum	4.020	0.493				
D Only	6.700	3.820				
+D+L	16.010	13.130				
+D+S	11.570	4.313				
+D+0.750L	13.683	10.802				
+D+0.750L+0.750S	17.335	11.172				
+0.60D	4.020	2.292				
L Only	9.310	9.310				
S Only	4.870	0.493				

Lic.# : KW-060082	32		Fa		A	5.		MYERS ENGINEER
DESCRIPTION:	4a. Floo	r Beam at Grid 3 (S	Steel)		•			
Steel Sectio	n Proper	ties: W12x5	50				•	
Depth	=	12.200 in	l xx	≣	391.00 in^4		=	1.710 in^4
Web Thick	=	0.370 in	S xx		64.20 in^3	Cw	=	1,880.00 in^6
Flange Width	=	8.080 in	R xx	=	5.180 in			
Flange Thick	=	0.640 in	Zx	. =	71.900 in^3			
Area	=	14.600 in^2	l yy	=	56.300 in^4			
Neight	=	50.000 plf	S yy	=	13.900 in^3	Wno	=	23.400 in^2
Kdesign	=	1.140 in	R yy	=	1.960 in	Sw	=	30.200 in^4
< 1	=	0.938 in	Zy	=	21.300 in^3	Qf	=	14.300 in^3
rts	=	2.250 in				Qw	=	35.400 in^3
Ycq	=	6.100 in						

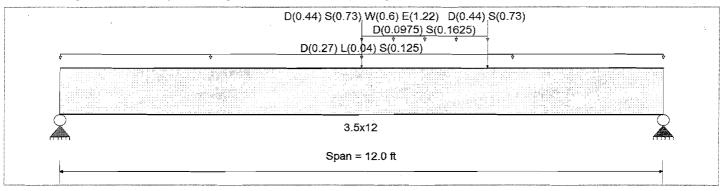
Wood Beam

File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31
MYERS ENGINEERING

Lic.#: KW-06008232

DESCRIPTION: 5. Header at Great Rm


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

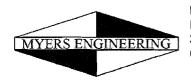
Material Properties

Analysis Method: Allowable Stress Design	Fb+	2,400.0 psi	E : Modulus of Elasticity	
Load Combination IBC 2018	Fb -	1,850.0 psi	Ebend- xx	1,800.0ksi
	Fc - Prll	1,650.0 psi	Eminbend - xx	950.0ksi
Wood Species : DF/DF	Fc - Perp	650.0 psi	Ebend- yy	1,600.0ksi
Wood Grade : 24F-V4	Fv .	265.0 psi	Eminbend - yy	850.0ksi
	Ft ·	1,100.0 psi	Density	31.210 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsional	buckling		•	·

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.270, L = 0.040, S = 0.1250, Tributary Width = 1.0 ft

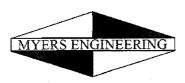

Uniform Load: D = 0.09750, S = 0.1625 k/ft, Extent = 6.0 -->> 8.50 ft, Tributary Width = 1.0 ft

Point Load: D = 0.440, S = 0.730, W = 0.60, E = 1.220 k @ 6.0 ft

Point Load: D = 0.440, S = 0.730 k @ 8.50 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	= = =	0.736 1 Ma 3.5x12 2,030.18psi 2,760.00psi	ximum Shear Stress Ratio Section used for this span	= =	0.445 : 1 3.5x12 135.57 psi 304.75 psi
Load Combination Location of maximum on span Span # where maximum occurs	=	+D+S 6.000ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+S 11.036 ft Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	n	0.180 in Ratio = -0.084 in Ratio = 0.404 in Ratio = 0.000 in Ratio =	799 >=360 1711 >=360 356 >=240 0 <240		

Vertical Reactions		Suppo	ort notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2			
Overall MAXimum	3.682	4.207	·		
Overall MINimum	-0.610	-0.610			
D Only	2.065	2.299			
+D+L	2.305	2.539			
+D+S	3.554	4.176			
+D+0.750L	2.245	2.479		·	
+D+0.750L+0.750S	3.361	3.887			
+D+0.60W	2.245	2.479			
+D-0.60W	1.885	2.119			
+D+0.70E	2.492	2.726			
+D-0.70E	1.638	1.872			
+D+0.750L+0.450W	2.380	2.614			


File: Masin Residence.ec6

Wood Beam
Software copyright ENERCALC, INC. 1983-2020, Build:12:20.5.31

Lic. #: KW-05008232
MYERS ENGINEERING

DESCRIPTION: 5. Header at Great Rm

Vertical Reactions		Support notation : Far left is #		Values in KIPS	
Load Combination	Support 1	Support 2			
+D+0.750L-0.450W	2.110	2.344			
+D+0.750L+0.750S+0.450W	3.496	4.022	•		
+D+0.750L+0.750S-0.450W	3.226	3.752			
+D+0.750L+0.750S+0.5250E	3.682	4.207			
+D+0.750L+0.750S-0.5250E	3.041	3.567			
+0.60D+0.60W	1.419	1.559			
+0.60D-0.60W	1.059	1.199		· ·	
+0.60D+0.70E	1.666	1.806			
+0.60D-0.70E	0.812	0.952			
L Only	0.240	0.240			
S Only	1.489	1.878			
W Only	0.300	0.300			
-W	-0.300	-0.300			
E Only	0.610	0.610			
E Only * -1.0	-0.610	-0.610			

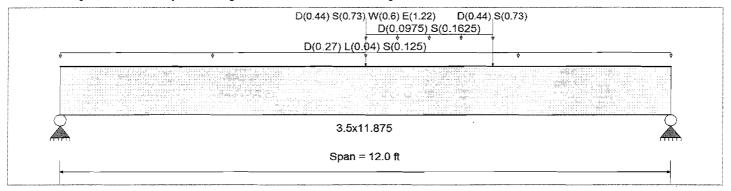
Wood Beam

File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5.31 MYERS ENGINEERING

Lic.#: KW-06008232

DESCRIPTION: 5a. Rim Beam at Great Rm


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

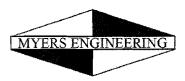
Material Properties

Analysis Method : Allowable Stress Design	Fb+	2,325.0 psi	E : Modulus of Elasti	city
Load Combination IBC 2018	Fb -	2,325.0 psi	Ebend-xx	1,550.0 ksi
	Fc - Prll	2,050.0 psi	Eminbend - xx	787.82 ksi
Wood Species : iLevel Truss Joist	Fc - Perp	800.0 psi		
Wood Grade : TimberStrand LSL 1.55E	Fv	310.0 psi		
	Ft	1,070.0 psi	Density	45.010 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsion	nal buckling		•	•

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.270, L = 0.040, S = 0.1250, Tributary Width = 1.0 ft

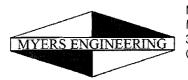

Uniform Load: D = 0.09750, S = 0.1625 k/ft, Extent = 6.0 -->> 8.50 ft, Tributary Width = 1.0 ft

Point Load: D = 0.440, S = 0.730, W = 0.60, E = 1.220 k @ 6.0 ft

Point Load : D = 0.440, S = 0.730 k @ 8.50 ft

DESIGN SUMMARY			·		Design OK
Maximum Bending Stress Ratio	=	0.775 1	Maximum Shear Stress Ratio	=	0.384 : 1
Section used for this span		3.5x11.875	Section used for this span		3.5x11.875
	=	2,073.14 psi		=	136.99 psi
	=	2,673.75psi		=	356.50 psi
Load Combination		+D+S	Load Combination		+D+S
Location of maximum on span	=	6.000ft	Location of maximum on span	=	11.036 ft
Span # where maximum occurs	=	Span #1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Deflec	tion	0.216 in Rat	io = 667 >= 360		
Max Upward Transient Deflection	1	-0.101 in Rat	io = 1428 >=360		
Max Downward Total Deflection		0.484 in Rati			
Max Upward Total Deflection		0.000 in Rati	io = 0 < 240		

Vertical Reactions		Support r	otation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2		
Overall MAXimum	3.682	4.207		
Overall MINimum	-0.610	-0.610		
D Only	2.065	2.299		·
+D+L	2.305	2.539	,	
+D+S	3.554	4.176		
+D+0.750L	2.245	2.479		
+D+0.750L+0.750S	3.361	3.887		
+D+0.60W	2.245	2.479		
+D-0.60W	1.885	2.119		
+D+0.70E	2.492	2.726		
+D-0.70E	1.638	1.872		
+D+0.750L+0.450W	2.380	2.614		


Wood Beam

File: Masin Residence.ec6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31
MYERS ENGINEERING

Lic. # : KW-06008232

DESCRIPTION: 5a. Rim Beam at Great Rm

Vertical Reactions		Sur	pport notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2			
+D+0.750L-0.450W	2.110	2.344	_		
+D+0.750L+0.750S+0.450W	3.496	4.022			
+D+0.750L+0.750S-0.450W	3.226	3.752			
+D+0.750L+0.750S+0.5250E	3.682	4.207			
+D+0.750L+0.750S-0.5250E	3.041	3.567			
+0.60D+0.60W	1.419	1.559			
+0.60D-0.60W	1.059	1.199			
+0.60D+0.70E	1.666	1.806			
+0.60D-0.70E	0.812	0.952			
L Only	0.240	0.240			
S Only	1.489	1.878	•		
W Only	0.300	0.300			
-W	-0.300	-0.300			
E Only	0.610	0.610			
E Only * -1.0	-0.610	-0.610			

Wood Beam

File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020; Build:12.20.5.31 MYERS ENGINEERING

Lic. #: KW-06008232

DESCRIPTION: 6. Upper Deck Joists

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method : Allowable Stress Design Load Combination IBC 2018	Fb + Fb - Fc - Prll	850 psi 850 psi 1300 psi	E: Modulus of Elastici Ebend- xx Eminbend - xx	ty 1300ksi 470ksi
Wood Species : Hem-Fir Wood Grade : No.2	FC - PIII Fc - Perp Fv Ft	405 psi 150 psi 525 psi	Density	26.84 pcf

Beam Bracing : Beam is Fully Braced against lateral-torsional buckling

Density 26.84 pcf Repetitive Member Stress Increase

D(0.019995) L(0.07998) S(0.033325)

2x10

Span = 10.0 ft

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.0150, L = 0.060, S = 0.0250 ksf, Tributary Width = 1.333 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.815 1 Ma 2x10	ximum Shear Stress Ratio Section used for this span	=	0.381 : 1 2x10
Occion asca for this span	=	701.07 psi	Section used for this span	=	45.76 psi
	=	860.20psi		=	120.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	=	+D+L 5.000ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	=	+D+L 0.000 ft Span # 1
Maximum Deflection Max Downward Transient Deflec	tion	0.148 in Ratio =	810>=480		Ορακι <i>ν</i> 1
Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection		0.000 in Ratio = 0.194 in Ratio = 0.000 in Ratio =	0 <480 617 >=360 0 <360		

Vertical Reactions		Support notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2		
Overall MAXimum	0.525	0.525		—
Overall MINimum	0.167	0.167		
D Only	0.100	0.100		
+D+L	0.500	0.500		
+D+S	0.267	0.267		
+D+0.750L	0.400	0.400		
+D+0.750L+0.750S	0.525	0.525		
+0.60D	0.060	0.060		
L Only	0.400	0.400		
S Only	0.167	0.167		

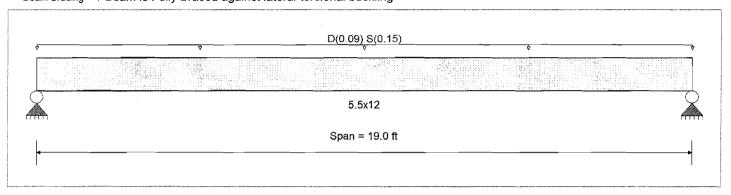
Wood Beam

File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5:31 MYERS ENGINEERING

Lic. # : KW-06008232

DESCRIPTION: 7. COvered Porch Roof Beam at Great Rm

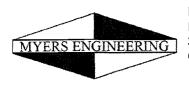

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	2400 psi	E: Modulus of Elasticity	1
Load Combination IBC 2018	Fb-	1850 psi	Ebend-xx	1800 ksi
	Fc - Prll	1650 psi	Eminbend - xx	950ksi
Wood Species : DF/DF	Fc - Perp	650 psi	Ebend- vy	1600ksi
Wood Grade : 24F-V4	Fv	265 psi	Eminbend - yy	850ksi
Wood Grade . 2-11 VI	Ft	1100 psi	Density	31.21 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsic	onal buckling	•	•	•


Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.090, S = 0.150, Tributary Width = 1.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	=	0.357: 1 Ma	aximum Shear Stress Ratio	=	0.153 : 1
Section used for this span		5.5x12	Section used for this span		5.5x12
	=	984.55psi		=	46.52 psi
	=	2,760.00psi		=	304.75 psi
Load Combination		+D+S	Load Combination		+D+S
Location of maximum on span	=	9.500ft	Location of maximum on span	=	18.029 ft
Span # where maximum occurs	=	Span #1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Deflect	tion	0.310 in Ratio =	734>=360		The second secon
Max Upward Transient Deflection	n	0.000 in Ratio =	0<360		Table State
Max Downward Total Deflection		0.497 in Ratio =	459>=240		The state of the s
Max Upward Total Deflection		0.000 in Ratio =	0 < 240		\$

Vertical Reactions		Support notation : Far left is #1		Values in KIPS	
Load Combination	Support 1	Support 2			
Overall MAXimum	2.280	2.280			
Overall MINimum	1.425	1.425			
D Only	0.855	0.855			
+D+L	0.855	0.855			
+D+S	2.280	2.280			
+D+0.750L	0.855	0.855			
+D+0.750L+0.750S	1.924	1.924			
+0.60D	0.513	0.513			
S Only	1.425	1.425			

Wood Beam

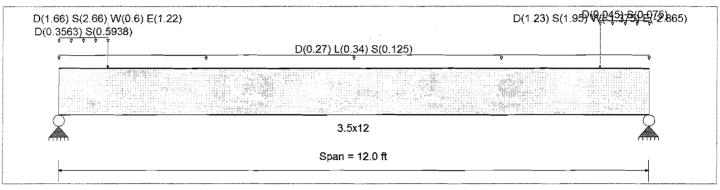
File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5:31 MYERS ENGINEERING

Lic.#: KW-06008232

DESCRIPTION: 8. Header at Dining Rm

CODE REFERENCES


Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb +	2,400.0 psi	E : Modulus of Elasti	icity
Load Combination IBC 2018	Fb -	1,850.0 psi	Ebend-xx	1,800.0ksi
	Fc - Prll	1,650.0 psi	Eminbend - xx	950.0ksi
Wood Species : DF/DF	Fc - Perp	650.0 psi	Ebend- yy	1,600.0ksi
Wood Grade : 24F-V4	Fv	265.0 psi	Eminbend - yy	850.0ksi
Wood Glade . 241 V4	Ft	1,100.0 psi	Density	31.210 pcf
		•		

Beam Bracing : Beam is Fully Braced against lateral-torsional buckling

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.270, L = 0.340, S = 0.1250, Tributary Width = 1.0 ft

Uniform Load: D = 0.3563, S = 0.5938 k/ft, Extent = 0.0 -->> 1.0 ft, Tributary Width = 1.0 ft

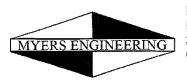
Point Load : D = 1.230, S = 1.950, W = -1.375, E = -2.865 k @ 11.0 ft Point Load : D = 1.660, S = 2.660, W = 0.60, E = 1.220 k @ 1.0 ft

Uniform Load: D = 0.0450, S = 0.0750 k/ft, Extent = 11.0 ->> 12.0 ft, Tributary Width = 1.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	=	0.753 1	Maximum Shear Stress Ratio	=	0.860 : 1
Section used for this span		3.5x12	Section used for this span		3.5x12
	=	2,078.09psi		=	364.45 psi
	=	2,760.00psi		=	424.00 psi
Load Combination		+D+0.750L+0.750S	Load Combination	+1.116D+0.750)L+0.750S-1.575E
Location of maximum on span	=	5.825ft	Location of maximum on span	=	11.036 ft
Span # where maximum occurs	. =	Span # 1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Deflect	ion	0.176 in Ratio	o = 818 >= 360		
Max Upward Transient Deflection	ļ	-0.032 in Ratio			
Max Downward Total Deflection		0.451 in Ratio			
Max Upward Total Deflection		0.000 in Ratio	o = 0 < 240		

Vertical Reactions		Support notation : Far left is	#1 Values in KIPS
Load Combination	Support 1	Support 2	
Overall MAXimum	8.522	7.941	
Overall MINimum	-0.880	2.525	
D Only	3.587	2.944	
+D+L	5.627	4.984	
+D+S	7,511	5.800	
+D+0.750L	5.117	4.474	
+D+0.750L+0.750S	8.060	6.616	
+D+0.60W	3.849	2.218	
+D-0.60W	3.326	3.670	
+D+0.70E	4.203	1.177	
+D-0.70E	2.972	4.711	

Wood Beam


File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31

Lic. #: KW-06008232

DESCRIPTION: 8. Header at Dining Rm

Vertical Reactions		Suppor	t notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2			
+D+0.750L+0.450W	5.313	3.929			
+D+0.750L-0.450W	4.922	5.018	•		
+D+0.750L+0.750S+0.450W	8.256	6.071			
+D+0.750L+0.750S-0.450W	7.864	7.160	•		
+D+0.750L+0.750S+0.5250E	8.522	5.290			
+D+0.750L+0.750S-0.5250E	7.598	7.941			
+0.60D+0.60W	2.414	1.040			
+0.60D-0.60W	1.891	2.493			
+0.60D+0.70E	2.768	-0.001			
+0.60D-0.70E	1.537	3.533			
L Only	2.040	2.040			
S Only	3.923	2.856			
W Only	0.435	-1.210			
-W	-0.435	1.210			
E Only	0.880	-2.525			
E Only * -1.0	-0.880	2.525	•		

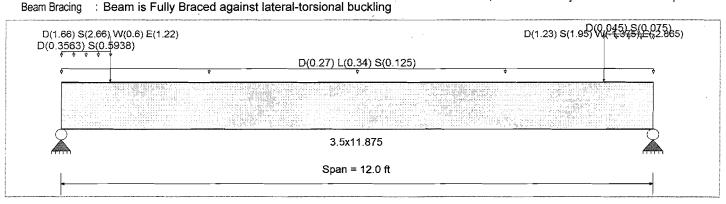
Wood Beam

File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31
MYERS ENGINEERING

Lic. # : KW-06008232

DESCRIPTION: 8a. Rim Beam at Dining Rm


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

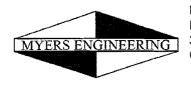
Material Properties

Analysis Method: Allowable Stress Design	Fb+	2,325.0 psi	E : Modulus of Elastic	city
Load Combination IBC 2018	Fb-	2,325.0 psi	Ebend-xx	1,550.0 ksi
	Fc - Pril	2,050.0 psi	Eminbend - xx	787.82 ksi
Wood Species : iLevel Truss Joist	Fc - Perp	800.0 psi		
Wood Grade : TimberStrand LSL 1.55E	Fv '	310.0 psi		
Wood Glade . Timbolotiana Lot 1.002	Ft	1,070.0 psi	Density	45.010 pcf

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.270, L = 0.340, S = 0.1250, Tributary Width = 1.0 ft

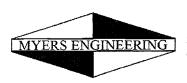

Uniform Load: D = 0.3563, S = 0.5938 k/ft, Extent = 0.0 -->> 1.0 ft, Tributary Width = 1.0 ft

Point Load : D = 1.230, S = 1.950, W = -1.375, E = -2.865 k @ 11.0 ft Point Load : D = 1.660, S = 2.660, W = 0.60, E = 1.220 k @ 1.0 ft

Uniform Load: D = 0.0450, S = 0.0750 k/ft, Extent = 11.0 ->> 12.0 ft, Tributary Width = 1.0 ft

DESIGN SUMMARY				2	Design OK
Maximum Bending Stress Ratio	=	0.794: 1	Maximum Shear Stress Ratio	=	0.740 : 1
Section used for this span		3.5x11.875	Section used for this span		3.5x11.875
	. =	2,122.07psi		=	367.23 psi
	=	2,673.75psi		=	496.00 psi
Load Combination		+D+0.750L+0.750S	Load Combination	+1.105D+0.750	0L+0.750S-1.575E
Location of maximum on span	=	5.825ft	Location of maximum on span	=	11.036 ft
Span # where maximum occurs	=	Span # 1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Deflect		0.211 in Ratio			DESCRIPTION
Max Upward Transient Deflection		-0.038 in Ratio	o = 3798 >= 360		u acceptante de la constante d
Max Downward Total Deflection		0.541 in Ratio			
Max Upward Total Deflection		0.000 in Ratio	o = 0 <240		

Vertical Reactions		Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	
Overall MAXimum	8.522	7.941	
Overall MINimum	-0.880	2.525	
D Only	3.587	2.944	
+D+L	5.627	4.984	
+D+S	7.511	5.800	
+D+0.750L	5.117	4.474	
+D+0.750L+0.750S	8.060	6.616	
+D+0.60W	3.849	2.218	
+D-0.60W	3.326	3.670	
+D+0.70E	4.203	1.177	
+D-0.70E	2.972	4.711	


Wood Beam

File: Masin Residence.ec6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31
MYPERS ENGINEERING

Lic.#: KW-06008232

DESCRIPTION: 8a. Rim Beam at Dining Rm

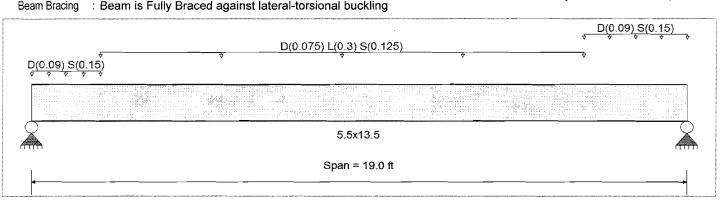
Vertical Reactions		· Support nota	tion . Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2			
+D+0.750L+0.450W	5.313	3.929			
+D+0.750L-0.450W	4.922	5.018			
+D+0.750L+0.750S+0.450W	8.256	6.071			
+D+0.750L+0.750S-0.450W	7.864	7.160			
+D+0.750L+0.750S+0.5250E	8.522	5.290			
+D+0.750L+0.750S-0.5250E	7.598	7.941			
+0.60D+0.60W	2.414	1.040			
+0.60D-0.60W	1.891	2.493			
+0.60D+0.70E	2.768	-0.001			
+0.60D-0.70E	1.537	3.533			
L Only	2.040	2.040			
S Only	3.923	2.856			
W Only	0.435	-1.210			
-W	-0.435	1.210			
E Only	0.880	-2.525			
E Only * -1.0	-0.880	2.525			

Wood Beam

File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31
MYERS ENGINEERING

DESCRIPTION: 9. Covered Porch Roof Beam at Dining Rm


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

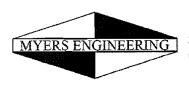
Material Properties

Analysis Method: Allowable Stress Design	Fb+	2,400.0 psi	E: Modulus of Elasticity	
Load Combination 1BC 2018	Fb-	1,850.0 psi	Ebend- xx	1,800.0ksi
	Fc - Pril	1,650.0 psi	Eminbend - xx	950.0ksi
Wood Species : DF/DF	Fc - Perp	650.0 psi	Ebend- vv	1,600.0ksi
Wood Grade : 24F-V4	Fv	265.0 psi	Eminbend - yy	850.0ksi
Wood Grade , 241 V I	Ft	1,100.0 psi	Density	31.210 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsic	nal buckling	•		r.

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Load for Span Number 1


Uniform Load: D = 0.090, S = 0.150 k/ft, Extent = 0.0 ->> 2.0 ft, Tributary Width = 1.0 ft

Uniform Load: D = 0.0750, L = 0.30, S = 0.1250 k/ft, Extent = 2.0 ->> 16.0 ft, Tributary Width = 1.0 ft

Uniform Load: D = 0.090, S = 0.150 k/ft, Extent = 16.0 ->> 19.0 ft, Tributary Width = 1.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	=	0.483 1 M	aximum Shear Stress Ratio	=	0.218 : 1
Section used for this span		5.5x13.5	Section used for this span		5.5x13.5
	=	1,149.08psi		=	57.68 psi
	=	2,378.90psi		=	265.00 psi
Load Combination		+D+L	Load Combination		+D+L
Location of maximum on span	=	9.431ft	Location of maximum on span	=	0.000 ft
Span # where maximum occurs	=	Span #1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Deflect	ction	0.399 in Ratio =	571 >=360		
Max Upward Transient Deflection	n	0.000 in Ratio =	0 < 360		
Max Downward Total Deflection		0.548 in Ratio =	415>=240		
Max Upward Total Deflection		0.000 in Ratio =	0 < 240		

Vertical Reactions		Support notation: Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	
Overall MAXimum	3.333	3.192	-
Overall MINimum	1.241	1.259	
D Only	0.744	0.756	
+D+L	2.955	2.745	
+D+S	1.985	2.015	
+D+0.750L	2.402	2.248	•
+D+0.750L+0.750S	3.333	3.192	
+0.60D	0.447	0.453	
L Only	2.211	1.989	•
S Only	1.241	1.259	

Wood Beam

File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5.31 MYERS ENGINEERING

Lic.#: KW-06008232

DESCRIPTION: 10. Header at Den

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Beam Bracing : Beam is Fully Braced against lateral-torsional buckling

Load Combination Set: IBC 2018

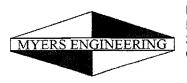
Material Properties

Analysis Method: Allowable Stress Design	Fb+	900.0 psi	E : Modulus of Elasticity		
Load Combination IBC 2018	Fb-	900.0 psi	Ebend-xx	1,600.0ksi	
	Fc - Prll	1,350.0 psi	Eminbend - xx	580.0ksi	
Wood Species : DouglasFir-Larch	Fc - Perp	625.0 psi			
Wood Grade : No.2	Fv	180.0 psi			
77000 07000 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Ft	575.0 psi	Density	31,210 pcf	

D(0.075) S(0.125)

4x8

Span = 10.0 ft


Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.0750, S = 0.1250, Tributary Width = 1.0 ft

DESIGN SUMMARY				Æ	Design OK
Maximum Bending Stress Ratio	=	0.727: 1 Ma	ximum Shear Stress Ratio	=	0.252 : 1
Section used for this span		4x8	Section used for this span		4x8
	=	978.43psi		=	52.21 psi
	=	1,345.50psi		=	207.00 psi
Load Combination		+D+S	Load Combination		+D+S
Location of maximum on span	=	5.000ft	Location of maximum on span	=	0.000 ft
Span # where maximum occurs	=	Span #1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Deflect	ction	0.159 in Ratio =	754 >= 360		
Max Upward Transient Deflection	n	0.000 in Ratio =	0 < 360		
Max Downward Total Deflection		0.255 in Ratio =	471 >=240		777
Max Upward Total Deflection		0.000 in Ratio =	0 < 240		

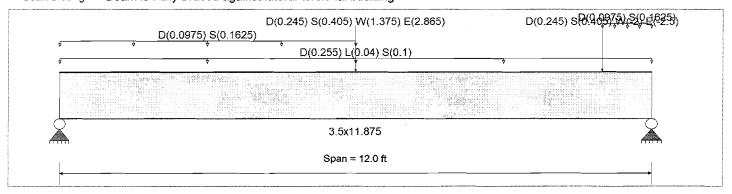
Vertical Reactions		Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	
Overall MAXimum	1.000	1.000	
Overall MINimum	0.625	0.625	
D Only	0.375	0.375	
+D+L	0.375	0.375	
+D+S	1.000	1.000	
+D+0.750L	0.375	0.375	
+D+0.750L+0.750S	0.844	0.844	
+0.60D	0.225	0.225	
S Only	0.625	0.625	

Wood Beam Lic # KW-06008232 File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5:31

MYERS ENGINEERING

DESCRIPTION: 11. Rim beam over Den


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

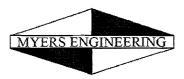
Load Combination Set: IBC 2018

Material Properties

Analysis Method : Allowable Stress Design	Fb+	2,325.0 psi	E : Modulus of Elasti	city	
Load Combination IBC 2018	Fb -	2,325.0 psi	Ebend-xx	1,550.0 ksi	
	Fc - Prll	2,050.0 psi	Eminbend - xx	787.82 ksi	
Wood Species : iLevel Truss Joist	Fc - Perp	800.0 psi			
Wood Grade : TimberStrand LSL 1.55E	Fv	310.0 psi			
11000 01000	Ft	1,070.0 psi	Density	45.010 pcf	
Beam Bracing : Beam is Fully Braced against lateral-torsional buckling					

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

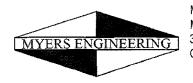

Uniform Load: D = 0.2550, L = 0.040, S = 0.10, Tributary Width = 1.0 ft

Uniform Load : D = 0.09750, S = 0.1625 k/ft, Extent = $0.0 \rightarrow > 6.0$ ft, Tributary Width = 1.0 ft Uniform Load : D = 0.09750, S = 0.1625 k/ft, Extent = $11.0 \rightarrow > 12.0$ ft, Tributary Width = 1.0 ft

Point Load : D = 0.2450, S = 0.4050, W = 1.375, E = 2.865 k @ 6.0 ft Point Load : D = 0.2450, S = 0.4050, W = -2.0, E = -2.50 k @ 11.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	=	0.892 1 Ma	aximum Shear Stress Ratio	=	0.378 : 1
Section used for this span		3.5×11.875	Section used for this span		3.5x11.875
	=	3,319.67psi		=	187.59 psi
	=	3,720.00psi		=	496.00 psi
Load Combination		+1.155D+2.10E	Load Combination		+1.155D+2.10E
Location of maximum on span	=	6.000ft	Location of maximum on span	=	10.993 ft
Span # where maximum occurs	=	Span # 1	Span # where maximum occurs	=	Span # 1
Maximum Deflection					Transition of the Control of the Con
Max Downward Transient Deflect	ion	0.186 in Ratio =	774>=360		
Max Upward Transient Deflection		-0.186 in Ratio =			PRI ALEXA
Max Downward Total Deflection		0.448 in Ratio =			HOLASSIA.
Max Upward Total Deflection		-0.002 in Ratio =	89526>=240		

	Support nota	ation : Far left is #1	Values in KIPS	
Support 1	Support 2			
4.119	3.992			
-1.224	0.859			
2.116	2.117			
2.356	2.357			
3.690	3.690			
2.296	2.297			
3.476	3.477			
2.428	1.429			
1.803	2.804			
2.973	1.515			
1.259	2.718			
	4.119 -1.224 2.116 2.356 3.690 2.296 3.476 2.428 1.803 2.973	Support 1 Support 2 4.119 3.992 -1.224 0.859 2.116 2.117 2.356 2.357 3.690 3.690 2.296 2.297 3.476 3.477 2.428 1.429 1.803 2.804 2.973 1.515	4.119 3.992 -1.224 0.859 2.116 2.117 2.356 2.357 3.690 3.690 2.296 2.297 3.476 3.477 2.428 1.429 1.803 2.804 2.973 1.515	Support 1 Support 2 4.119 3.992 -1.224 0.859 2.116 2.117 2.356 2.357 3.690 3.690 2.296 2.297 3.476 3.477 2.428 1.429 1.803 2.804 2.973 1.515



Wood Beam Lic. #: KW-06008232

File: Masin Residence.ec6
Software copyright ENERCALC, INC, 1983-2020, Build:12,20.5.31
MYERS ENGINEERING

DESCRIPTION: 11. Rim beam over Den

Vertical Reactions		Sup	port notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2			
+D+0.750L+0.450W	2.530	1.781			
+D+0.750L-0.450W	2.061	2.812			
+D+0.750L+0.750S+0.450W	3.711	2.961			
+D+0.750L+0.750S-0.450W	3.242	3.992			
+D+0.750L+0.750S+0.5250E	4.119	3.026			
+D+0.750L+0.750S-0.5250E	2.834	3.928			
+0.60D+0.60W	1.582	0.583			
+0.60D-0.60W	0.957	1.958			
+0.60D+0.70E	2.126	0.669			
+0.60D-0.70E	0.413	1.871			
L Only	0.240	0.240	•		
S Only	1.574	1.573			
W Only	0,521	-1,146			
-W	-0.521	1.146			
E Only	1.224	-0.859			
E Only * -1.0	-1.224	0.859			

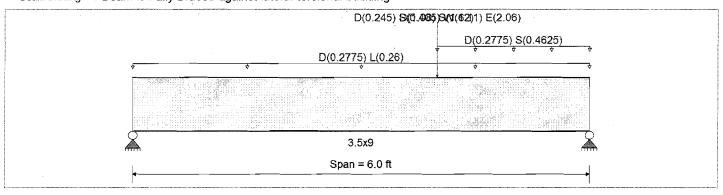
Wood Beam

File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 MYERS ENGINEERING

Lic. # : KW-06008232

DESCRIPTION: 12.Header at Guest Rm


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

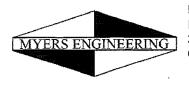
Material Properties

Analysis Method: Allowable Stress Design	Fb+	2400 psi	E : Modulus of Elastic	ity
Load Combination IBC 2018	Fb ~	1850 psi	Ebend- xx	1800 ksi
	Fc - PrII	1650 psi	Eminbend - xx	950 ksi
Wood Species : DF/DF	Fc - Perp	650 psi	Ebend- yy	1600 ksi
Wood Grade : 24F-V4	Fv	265 psi `	Eminbend - yy	850ksi
17000 01000 1.277 1.	Ft	1100 psi	Density	31.21 pcf
Beam Bracing : Beam is Fully Braced against lateral-to:	rsional buckling	·	. *	•

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

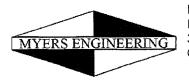
Uniform Load: D = 0.2775, L = 0.260, Tributary Width = 1.0 ft


Uniform Load: D = 0.2775, S = 0.4625 k/ft, Extent = 4.0 -->> 6.0 ft, Tributary Width = 1.0 ft

Point Load : $D \doteq 0.2450$, S = 0.4050, W = 1.110, E = 2.060 k @ 4.0 ft

Point Load: D = 1.080, S = 1.620 k @ 4.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Rat Section used for this span	io =	0.740 1 P 3.5x9	Maximum Shear Stress Ratio Section used for this span	=	0.663 : 1 3.5x9
	=	2,842.06psi		=	281.20 psi
	=	3,840.00psi		=	424.00 psi
Load Combination Location of maximum on span	+1.116D+0.750I	+0.750S+1.575E 3.985ft	Load Combination Location of maximum on span	+1.116D+0.750L	L+0.750S+1.575E 5.255 ft
Span # where maximum occurs	=	Span # 1	Span # where maximum occurs	=	Span #1
Maximum Deflection Max Downward Transient Defle Max Upward Transient Defle Max Downward Total Deflect Max Upward Total Deflection	ction ion	0.044 in Ratio -0.036 in Ratio 0.117 in Ratio 0.000 in Ratio	= 1989 >=480 = 615 >=360		


Support notation : Far left is #1	Values in KIPS
Support 2	
5.075	
-1.373	
2.178	
2.958	
4.299	
2.763	
4.354	
2.622	
1.734	
3.140	
1.217	
3.096	
	Support 2 5.075 -1.373 2.178 2.958 4.299 2.763 4.354 2.622 1.734 3.140 1.217

Wood Beam Lic. #: KW-06008232

File: Masin Residence.ec6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31
MYERS ENGINEERING

Vertical Reactions	•	Supp	oort notation : Far left is #1	Values in KIPS	•
Load Combination	Support 1	Support 2			
+D+0.750L-0.450W	1.785	2.430			
+D+0.750L+0.750S+0.450W	2.740	4.687			
+D+0.750L+0.750S-0.450W	2.407	4.021			
+D+0.750L+0.750S+0.5250E	2.934	5.075			
+D+0.750L+0.750S-0.5250E	2.213	3.633			
+0.60D+0.60W	1.042	1.751	• *		
+0.60D-0.60W	0.598	0.863			
+0.60D+0.70E	1.301	2.268			
+0.60D-0.70E	0.339	0.346	:		
L Only	0.780	0.780			
S Only	0.829	2.121			
W Only	0.370	0.740			
-W	-0.370	-0.740	f.		
E Only	0.687	1.373			
E Only * -1.0	-0.687	-1.373			

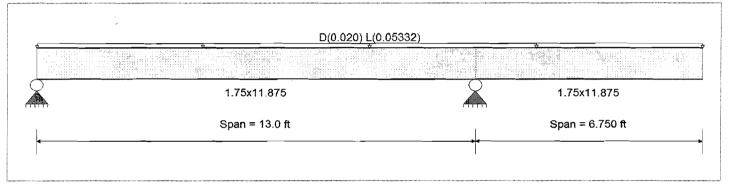
Wood Beam

File: Masin Residence ec6

Software copyright ENERCALC, INC. 1963-2020, Build:12.20.5.31

Lic.#: KW-06008232

DESCRIPTION: 13. Cantilever Joists


CODE REFERENCES

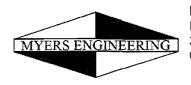
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	2325 psi	E: Modulus of Elast	icity
Load Combination IBC 2018	Fb -	2325 psi	Ebend-xx	1550ksi
	Fc - Prll	2050 psi	Eminbend - xx	787.815ksi
Wood Species : iLevel Truss Joist	Fc - Perp	800 psi		
Wood Grade : TimberStrand LSL 1.55E	Fv	310 psi		
	- Ft	1070 psi	Density	45.01 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsion	nal buckling		Repetitive Memb	er Stress Increase

Applied Loads


Service loads entered. Load Factors will be applied for calculations.

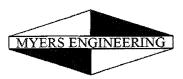
Loads on all spans...

Uniform Load on ALL spans : D = 0.0150, L = 0.040 ksf, Tributary Width = 1.333 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.202 1 M 1.75x11.875 487.30psi 2.418.00psi	Maximum Shear Stress Ratio Section used for this span	= =	0.125 : 1 1.75x11.875 38.67 psi 310.00 psi
Load Combination Location of maximum on span Span # where maximum occurs		LL Comb Run (LL) 13.000ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	+D+L++ = =	1, LL Comb Run (LL) 12.056 ft Span #1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection		0.225 in Ratio -0.150 in Ratio 0.253 in Ratio -0.122 in Ratio	= 1076 >=480 = 638 >=360		

Vertical Reactions		Sup	port notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2	Support 3		
Overall MAXimum	0.442	1.100			
Overall MINimum	0.253	0.800			
+D+H	0.095	0.300			
+D+L+H, LL Comb Run (*L)	0.001	0.753			
+D+L+H, LL Comb Run (L*)	0.442	0.647			
+D+L+H, LL Comb Run (LL)	0.348	1.100			
+D+Lr+H, LL Comb Run (*L)	0.095	0.300			
+D+Lr+H, LL Comb Run (L*)	0.095	0.300			
+D+Lr+H, LL Comb Run (LL)	0.095	0.300			
+D+S+H	0.095	0.300			
+D+0.750Lr+0.750L+H, LL Comb Run (*	0.025	0.640			
+D+0.750Lr+0.750L+H, LL Comb Run (L	0.355	0.560			
+D+0.750Lr+0.750L+H, LL Comb Run (L	0.285	0.900			
+D+0.750L+0.750S+H, LL Comb Run (*L	0.025	0.640			

Wood Beam


H Only

File: Masin Residence.ec6.
Software copyright ENERCALC; INC. 1983-2020, Build:12:20:5.31
MYERS ENGINEERING

Lic. #: KW-06008232

DESCRIPTION: 13. Cantilever Joists

Vertical Reactions	Support notation: Far left is #1		port notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2	Support 3		
+D+0.750L+0.750S+H, LL Comb Run (L*	0.355	0.560			
+D+0.750L+0.750S+H, LL Comb Run (LL	0.285	0.900			
+D+0.60W+H	0.095	0.300			
+D-0.60W+H	0.095	0.300			
+D+0.70E+H	0.095	0.300			
+D-0.70E+H	0.095	0.300			
+D+0.750Lr+0.750L+0.450W+H, LL Comb	0.025	0.640			
+D+0.750Lr+0.750L+0.450W+H, LL Comb	0.355	0.560			
+D+0.750Lr+0.750L+0.450W+H, LL Comb	0.285	0.900			
+D+0.750Lr+0.750L-0.450W+H, LL Comb	0.025	0.640			
+D+0.750Lr+0.750L-0.450W+H, LL Comb	0.355	0.560			
+D+0.750Lr+0.750L-0.450W+H, LL Comb	0.285	0.900			
+D+0.750L+0.750S+0.450W+H, LL Comb	0.025	0.640			
+D+0.750L+0.750S+0.450W+H, LL Comb	0.355	0.560			
+D+0.750L+0.750S+0.450W+H, LL Comb	0.285	0.900			
+D+0.750L+0.750S-0.450W+H, LL Comb	0.025	0.640			
+D+0.750L+0.750S-0.450W+H, LL Comb	0.355	0.560			
+D+0.750L+0.750S-0.450W+H, LL Comb	0.285	0.900			
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.025	0.640			
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.355	0.560			
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.285	0.900			
+D+0.750L+0.750S-0.5250E+H, LL Comb	0.025	0.640			
+D+0.750L+0.750S-0.5250E+H, LL Comb	0.355	0.560			
+D+0.750L+0.750S-0.5250E+H, LL Comb	0.285	0.900			
+0.60D+0.60W+0.60H	0.057	0.180			
+0.60D-0.60W+0.60H	0.057	0.180			
+0.60D+0.70E+0.60H	0.057	0.180			
+0.60D-0.70E+0.60H	0.057	0.180			
D Only	0.095	0.300			
L Only, LL Comb Run (*L)	-0.093	0.453			
L Only, LL Comb Run (L*)	0.347	0.347			
L Only, LL Comb Run (LL)	0.253	0.800			
LO-1.					

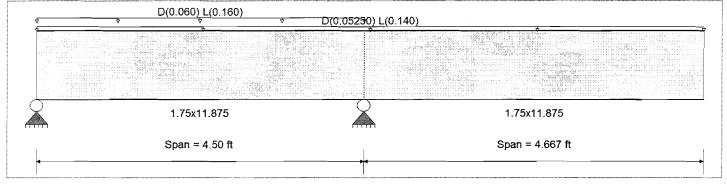
Wood Beam

File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 MYERS ENGINEERING

Lic. # . KW-06008232

DESCRIPTION: 14. Rim beam at top of stair


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

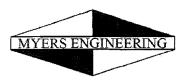
Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design		2,325.0 psi	E : Modulus of Elasti	city
Load Combination 1BC 2018	Fb -	2,325.0 psi	Ebend-xx	1,550.0ksi
	Fc - Pril	2,050.0 psi	Eminbend - xx	787.82 ksi
Wood Species : iLevel Truss Joist	Fc - Perp	800.0 psi		
Wood Grade : TimberStrand LSL 1.55E	Fv	310.0 psi		
	Ft	1,070.0 psi	Density	45.010 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsio	nal buckling			

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

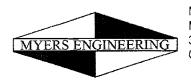

Loads on all spans...

Uniform Load on ALL spans: D = 0.05250, L = 0.140 k/ft

Partial Length Uniform Load: D = 0.060, L = 0.160 k/ft, Extent = 0.0 ->> 4.50 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	=	0.263: 1	Maximum Shear Stress Ratio	=	0.230 : 1
Section used for this span		1.75x11.875	Section used for this span		1.75×11.875
	=	611.65psi		=	71.43 psi
	=	2,325.00psi		=	310.00 psi
Load Combination	+D+L+H, (L Comb Run (LL)	Load Combination	+D+L+H,	, LL Comb Run (LL)
Location of maximum on span	=	4.500ft	Location of maximum on span	=	3.520 ft
Span # where maximum occurs	=	Span #1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Deflect	ction	0.086 in Rati			
Max Upward Transient Deflection		-0.024 in Rati			
Max Downward Total Deflection		0.110 in Rati			****
Max Upward Total Deflection		-0.010 in Rati	o = 5478 >=240		

Vertical Reactions		Sup	pport notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2	Support 3		
Overall MAXimum	0.801	2.292			
Overall MINimum	0.336	1.667			
+D+H	0.126	0.625			
+D+L+H, LL Comb Run (*L)	-0.213	1.617			
+D+L+H, LL Comb Run (L*)	0.801	1.300			
+D+L+H, LL Comb Run (LL)	0.462	2.292			
+D+Lr+H, LL Comb Run (*L)	0.126	0.625			
+D+Lr+H, LL Comb Run (L*)	0.126	0.625			
+D+Lr+H, LL Comb Run (LL)	0.126	0.625			
+D+S+H	0.126	0.625			
+D+0.750Lr+0.750L+H, LL Comb Run (*	-0.128	1.369			
+D+0.750Lr+0.750L+H, LL Comb Run (L	0.632	1.131			
+D+0.750Lr+0.750L+H, LL Comb Run (L	0.378	1.876			


Wood Beam

File: Masin Residence.ec6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31
MYERS ENGINEERING

Lic.#: KW-06008232

DESCRIPTION: 14. Rim beam at top of stair

Vertical Reactions		Sup	port notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	Support 3	
+D+0.750L+0.750S+H, LL Comb Run (*L	-0.128	1.369		
+D+0.750L+0.750S+H, LL Comb Run (L*	0.632	1.131		
+D+0.750L+0.750S+H, LL Comb Run (LL	0.378	1.876		
+D+0.60W+H	0.126	0.625		
+D-0.60W+H	0.126	0.625		
+D+0.70E+H	0.126	0.625		
+D-0.70E+H	0.126	0.625		
+D+0.750Lr+0.750L+0.450W+H, LL Comb	-0.128	1.369		
+D+0.750Lr+0.750L+0.450W+H, LL Comb	0.632	1.131		
+D+0.750Lr+0.750L+0.450W+H, LL Comb	0.378	1.876		
+D+0.750Lr+0.750L-0.450W+H, LL Comb	-0.128	1.369		
+D+0.750Lr+0.750L-0.450W+H, LL Comb	0.632	1.131		
+D+0.750Lr+0.750L-0.450W+H, LL Comb	0.378	1.876		
+D+0.750L+0.750S+0.450W+H, LL Comb	-0.128	1.369		
+D+0.750L+0.750S+0.450W+H, LL Comb	0.632	1.131		
+D+0.750L+0.750S+0.450W+H, LL Comb	0.378	1.876		
+D+0.750L+0.750S-0.450W+H, LL Comb	-0.128	1.369		
+D+0.750L+0.750S-0.450W+H, LL Comb	0.632	1.131		
+D+0.750L+0.750S-0.450W+H, LL Comb	0.378	1.876		
+D+0.750L+0.750S+0.5250E+H, LL Comb	-0.128	1.369	•	
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.632	1.131		
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.378	1.876		
+D+0.750L+0.750S-0.5250E+H, LL Comb	-0.128	1.369		
+D+0.750L+0.750S-0.5250E+H, LL Comb	0.632	1.131		
+D+0.750L+0.750S-0.5250E+H, LL Comb	0.378	1.876		
+0.60D+0.60W+0.60H	0.076	0.375		
+0.60D-0.60W+0.60H	0.076	0.375		
+0.60D+0.70E+0.60H	0.076	0.375		
+0.60D-0.70E+0.60H	0.076	0.375		
D Only	0.126	0.625		
L Only, LL Comb Run (*L)	-0.339	0.992		•
L Only, LL Comb Run (L*)	0.675	0.675		
L Only, LL Comb Run (LL) H Only	0.336	1.667		

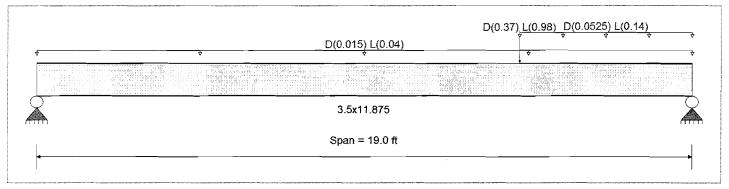
Wood Beam

File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31

MYERS ENGINEERING

DESCRIPTION: 15. Floor beam at Master Shower


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

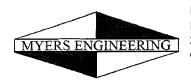
Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	 Fb +	2600 psi	E : Modulus of Elasti	city
Load Combination IBC 2018	Fb -	2600 psi	Ebend-xx	1900ksi
	Fc - Prll	2510 psi	Eminbend - xx	965.71 ksi
Wood Species ; iLevel Truss Joist	Fc - Perp	750 psi		
Wood Grade : MicroLam LVL 1.9 E	Fv	285 psi		
	Ft	1555 psi	Density	42.01 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsion	nal buckling			

Applied Loads

Service loads entered. Load Factors will be applied for calculations.


Uniform Load: D = 0.0150, L = 0.040, Tributary Width = 1.0 ft

Point Load : D = 0.370, L = 0.980 k @ 14.0 ft

Uniform Load: D = 0.05250, L = 0.140 k/ft, Extent = 14.0 -->> 19.0 ft, Tributary Width = 1.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	= =	0.486 1 3.5x11.875 1,263.84psi 2,600.00psi	Maximum Shear Stress Ratio Section used for this span	=	0.268 : 1 3.5x11.875 76.25 psi 285.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+L 14.007ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+L 18.029 ft Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection		0.388 in Rat 0.000 in Rat 0.534 in Rat 0.000 in Rat	io = 0 <360 io = 426 >=240		

Vertical Reactions		Support notat	ion : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2	•		
Overall MAXimum	1.004	2.353	-		
Overall MINimum	0.730	1.710			
D Only	0.274	0.643			
+D+L	1.004	2.353			
+D+S	0.274	0.643			
+D+0.750L	0.822	1.926			
+D+0.750L+0.750S	0.822	1.926			
+0.60D	0.165	0.386			
L Only	0.730	1.710			
S Only					

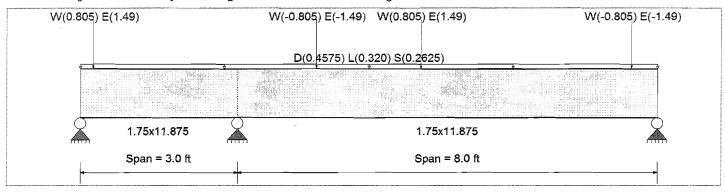
Wood Beam

File: Masin Residence ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31

MYERS ENGINEERING

Lic.#: KW-06008232 **DESCRIPTION:** 16. Rim beam at Grid 4


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analys	is Method	l: Allowable Stress Design	Fb+	2,325.0 psi	E : Modulus of Elasti	city
		on IBC 2018	Fb-	2,325.0 psi	Ebend-xx	1,550.0 ksi
			Fc - Prll	2,050.0 psi	Eminbend - xx	787.82 ksi
Wood:	Species	: iLevel Truss Joist	Fc - Perp	800.0 psi		
Wood		: TimberStrand LSL 1.55E	Fv	310.0 psi		
11004	O. aao		Ft	1,070.0 psi	Density	45.010 pcf
Beam	Bracing	: Beam is Fully Braced against latera	al-torsional buckling	·	•	,

Applied Loads

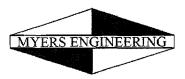
Service loads entered. Load Factors will be applied for calculations.

Loads on all spans...

Uniform Load on ALL spans: D = 0.4575, L = 0.320, S = 0.2625 k/ft

Load for Span Number 1

Point Load: W = 0.8050, E = 1.490 k @ 0.250 ft

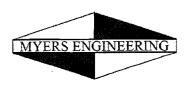

Load for Span Number 2

Point Load: W = -0.8050, E = -1.490 k @ 1.50 ft Point Load: W = 0.8050, E = 1.490 k @ 3.50 ft Point Load: W = -0.8050, E = -1.490 k @ 7.50 ft

DES	ICN	C1	IRARA.	APV

DESIGN SUMMART							Design On
Maximum Bending Stress		=	0.598 1	Maximum Shear Stress R	atio	=	0.690 : 1
Section used for this s	pan		1.75x11.875	Section used for this	span		1.75x11.875
		=	1,598.28psi			=	342.01 psi
,		=	2,673.75psi			=	496.00 psi
Load Combination Location of maximum on sp Span # where maximum occ	an	0.750S+H, = =	LL Comb Run (L 3.000ft Span # 1	Load Combination Location of maximum on Span # where maximum or	span	750L+0.75 = -	50S+1.575E+H, LL 1.520 ft Span # 2
Maximum Deflection Max Downward Transie			0.045 in Rat	•	occurs	_	Opan # 2
Max Upward Transient I	Deflection		-0.014 in Rat	io = 6889>=360			
Max Downward Total Defle			0.128 in Rat -0.011 in Rat				
op.aaa rotat Dona			-0.077 744	. 01007-240			

Vertical Reactions		Su	pport notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	.Support 3	
Overall MAXimum	-1.493	7.549	3.456	
Overall MiNimum	-1.282	0.227	1.056	
+D+H	-0.248	3.801	1.480	
+D+L+H, LL Comb Run (*L)	-0.868	5.934	2.527	
+D+L+H, LL Comb Run (L*)	0.199	4.326	1.467	
+D+L+H, LL Comb Run (LL)	-0.421	6.459	2.515	
+D+Lr+H, LL Comb Run (*L)	-0.248	3.801	1.480	
+D+Lr+H, LL Comb Run (L*)	-0.248	3.801	1.480	


Wood Beam

File: Masin Residence.ec6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31
MYERS ENGINEERING

Lic.#: KW-06008232

DESCRIPTION: 16. Rim beam at Grid 4

Vertical Reactions		Support notation : Far left is #1		Values in KIPS
Load Combination	Support 1	Support 2	Support 3	
+D+Lr+H, LL Comb Run (LL)	-0.248	3.801	1.480	
+D+S+H	-0.390	5.981	2.329	
+D+0.750Lr+0.750L+H, LL Comb Run (*	-0.713	5.401	2.265	
+D+0.750Lr+0.750L+H, LL Comb Run (L	0.088	4.194	1.471	
+D+0.750Lr+0.750L+H, LL Comb Run (L	-0.378	5.794	2.256	
+D+0.750L+0.750S+H, LL Comb Run (*L	-0.820	7.036	2.902	
+D+0.750L+0.750S+H, LL Comb Run (L*	-0.019	5.830	2.107	
+D+0.750L+0.750S+H, LL Comb Run (LL	-0.484	7.430	2.893	
+D+0.60W+H	0.168	3.727	1.138	
+D-0.60W+H	-0.664	3.874	1.822	
+D+0.70E+H	0.650	3.642	0.741	•
+D-0.70E+H	-1.145	3.959	2.219	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	-0.402	5.345	2.009	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	0.399	4.139	1.214	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	-0.066	5.739	1.999	
+D+0.750Lr+0.750L-0.450W+H, LL Comb	-1.025	5.456	2.522	
+D+0.750Lr+0.750L-0.450W+H, LL Comb	-0.224	4.249	1.727	
+D+0.750Lr+0.750L-0.450W+H, LL Comb	-0.690	5.849	2.513	
+D+0.750L+0.750S+0.450W+H, LL Comb	-0.508	6.981	2.645	
+D+0.750L+0.750S+0.450W+H, LL Comb	0.293			
+D+0.750L+0.750S+0.450W+H, LL Comb	-0.173	5.775 7.375	1.851	
+D+0.750L+0.750S+0.450W+H, LL Comb	-1.132	7.373	2.636	
+D+0.750L+0.750S-0.450W+H, LL Comb	-0.331		3.159	
· · · · · · · · · · · · · · · · · · ·		5.885	2.364	
+D+0.750L+0.750S-0.450W+H, LL Comb +D+0.750L+0.750S+0.5250E+H, LL Comb	-0.796	7.485	3.149	
	-0.147	6.917	2.348	
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.654	5.711	1.553	
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.189	7.311	2.339	
+D+0.750L+0.750S-0.5250E+H, LL Comb	-1.493	7.155	3.456	
+D+0.750L+0.750S-0.5250E+H, LL Comb	-0.692	5.949	2.662	
+D+0.750L+0.750S-0.5250E+H, LL Comb	-1.158	7.549	3.447	
+0.60D+0.60W+0.60H	0.267	2.207	0.546	
+0.60D-0.60W+0.60H	-0.564	2.354	1.230	
+0.60D+0.70E+0.60H	0.749	2.122	0.149	
+0.60D-0.70E+0.60H	-1.046	2.439	1.627	
D Only	-0.248	3.801	1.480	
L Only, LL Comb Run (*L)	-0.621	2.133	1.047	
L Only, LL Comb Run (L*)	0.447	0.525	-0.012	
L Only, LL Comb Run (LL)	-0.173	2.658	1.035	
S Only	- 0.142	2.181	0.849	
W Only	0.693	-0.122	-0.570	
W	-0.693	0.122	0.570	
E Only	1.282	-0.227	-1.056	
E Only * -1.0	-1.282	0.227	1.056	
H Only				

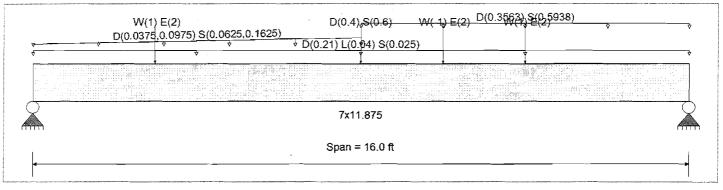
Wood Beam

File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5:31
MYERS ENGINEERING

Lic. # : KW-06008232

DESCRIPTION: 17. Rim Beam at Grid C


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

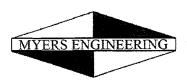
Analysis Method: Allowable Stress Design	Fb+	2,900.0 psi	E : Modulus of Elast	icity	
Load Combination 1BC 2018	Fb -	2,900.0 psi	Ebend-xx	2,000.0 ksi	
	Fc - Pril	2,900.0 psi	Eminbend - xx	1,016.54 ksi	
Wood Species : iLevel Truss Joist	Fc - Perp	750.0 psi			
Wood Grade : Parallam PSL 2.0E	Fv	290.0 psi			
Wood Olddo . T didnam T OE 2.02	Ft	2,025.0 psi	Density	45.070 pcf	
Ream Bracing Beam is Fully Braced against lateral-torsic	onal buckling	•		,	

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.210, L = 0.040, S = 0.0250, Tributary Width = 1.0 ft

Varying Uniform Load: D= 0.03750->0.09750, S= 0.06250->0.1625 k/ft, Extent = 0.0 -->> 8.0 ft, Trib Width = 1.0 ft

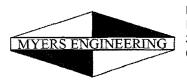

Uniform Load: D = 0.3563, S = 0.5938 k/ft, Extent = 8.0 ->> 16.0 ft, Tributary Width = 1.0 ft

Point Load: D = 0.40, S = 0.60 k @ 8.0 ft Point Load: W = 1.0, E = 2.0 k @ 3.0 ft Point Load: W = -1.0, E = 2.0 k @ 10.0 ft Point Load: W = 1.0, E = 2.0 k @ 12.0 ft

DES	CN	CIII	ARAA	DV

DESIGN SUMMARY					Design UK
Maximum Bending Stress Rat	io =	0.814: 1	Maximum Shear Stress Ratio	=	0.467 : 1
Section used for this span		7x11.875	Section used for this span		7x11.875
	=	3,777.44 psi		=	216.68 psi
	=	4,640.00psi		=	464.00 psi
Load Combination	+1.116D+0.750I	_+0.750S+1.575E	Load Combination	+1.116D+0.750	L+0.750S+1.575E
Location of maximum on span	=	9.985ft	Location of maximum on span	=	15.066 ft
Span # where maximum occurs	=	Span # 1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient De	flection	0.339 in Ratio	o = 567 >=480		
Max Upward Transient Defle	ction	-0.325 in Ratio	= 590>=480		
Max Downward Total Deflect	ion	0.801 in Ratio	= 239>=180		
Max Upward Total Deflection		-0.016 in Ratio) = 11899>=180		
<u> </u>					

Vertical Reactions		Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	
Overall MAXimum	6.474	9.294	
Overall MINimum	-2.875	-3.125	
D Only	2.978	4.173	
+D+L	3.298	4.493	
+D+S	5.307	8.494	
+D+0.750L	3.218	4.413	
+D+0.750L+0.750S	4.965	7.654	
+D+0.60W	3.390	4.360	


Wood Beam

File: Masin Residence.ec6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31
MYERS ENGINEERING

Lic. # : KW-06008232

DESCRIPTION: 17. Rim Beam at Grid C

Vertical Reactions		Supp	ort notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2		
+D-0.60W	2.565	3.985		
+D+0.70E	4.990	6.360		
+D-0.70E	0.965	1.985		
+D+0.750L+0.450W	3.527	4.553	,	•
+D+0.750L-0.450W	2.908	4.272		
+D+0.750L+0.750S+0.450W	5.274	7.794		
+D+0.750L+0.750S-0.450W	4.655	7.513		
+D+0.750L+0.750S+0.5250E	6.474	9.294		
+D+0.750L+0.750S-0.5250E	3.455	6.013		
+0.60D+0.60W	2.199	2.691		
+0.60D-0.60W	1.374	2.316		
+0.60D+0.70E	3.799	4.691		
+0.60D-0.70E	-0.226	0.316		
L Only	0.320	0.320		
S Only	2.329	4.321		
W Only	0.688	0.313		
-W	-0.688	-0.313		
E Only	2.875	3.125		
E Only * -1.0	-2.875	-3.125		

Wood Beam

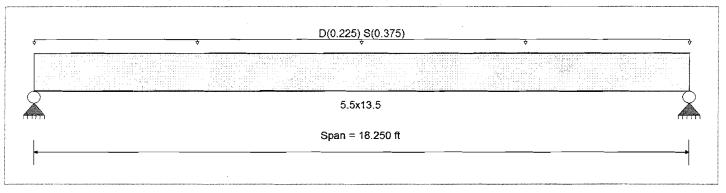
File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 MYERS ENGINEERING

Lic. # : KW-06008232

DESCRIPTION: 18. Garage Door Header

CODE REFERENCES

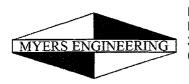

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb +	2,400.0 psi	E : Modulus of Elasti	icity
Load Combination IBC 2018	Fb -	1,850.0 psi	Ebend- xx	1,800.0 ksi
	Fc - Prll	1,650.0 psi	Eminbend - xx	950.0ksi
Wood Species : DF/DF	Fc - Perp	650.0 psi	Ebend- yy	1,600.0 ksi
Wood Grade : 24F-V4	Fv .	265.0 psi	Eminbend - yy	850.0 ksi
11000 01000 1 - · · ·	Ft	1,100.0 psi	Density	31.210 pcf

Beam Bracing : Beam is Fully Braced against lateral-torsional buckling


Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.2250, S = 0.3750, Tributary Width = 1.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	=	0.653 1 M	aximum Shear Stress Ratio	=	0.321 : 1
Section used for this span		5.5x13.5	Section used for this span		5.5x13.5
	=	1,794.28 psi		=	97.69 psi
	=	2,746.77 psi		=	304.75 psi
Load Combination		+D+S	Load Combination		+D+S
Location of maximum on span	=	9.125ft	Location of maximum on span	=	0.000 ft
Span # where maximum occurs	=	Span #1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Deflec	tion	0.464 in Ratio =	472>=360		
Max Upward Transient Deflection	า	0.000 in Ratio =	0 < 360		
Max Downward Total Deflection		0.742 in Ratio =	295>=240		
Max Upward Total Deflection		0.000 in Ratio =	0 < 240		

Vertical Reactions		Sup	port notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2			
Overall MAXimum	5.475	5.475			
Overall MINimum	3.422	3.422			
D Only	2.053	2.053			
+D+L	2.053	2.053			
+D+S	5.475	5.475			
+D+0.750L	2.053	2.053			
+D+0.750L+0.750S	4.620	4.620			
+0.60D	1.232	1.232			
S Only	3.422	3.422			

Wood Beam

File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20.5.31
MYERS ENGINEERING

Repetitive Member Stress Increase

Lic. #: KW-06008232

DESCRIPTION: 19. Lower Deck Joists

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

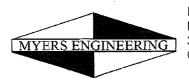
Load Combination Set: IBC 2018

Material Properties

Analysis Method : Allowable Stress Design		850.0 psi	E : Modulus of Elasti	city
Load Combination 1BC 2018	Fb -	850.0 psi	Ebend-xx	1,300.0ksi
	Fc - Pril	1,300.0 psi	Eminbend - xx	470.0ksi
Wood Species : Hem-Fir	Fc - Perp	405.0 psi		•
Wood Grade : No.2	Fv	150.0 psi		
77000 Grade . 110.2	F#	525.0 psi	Density	26.840 pcf

D(0.033325) L(0.07998) S(0.033325) 2x10 Span = 10.0 ft

Applied Loads


Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.0250, L = 0.060, S = 0.0250 ksf, Tributary Width = 1.333 ft

Beam Bracing : Beam is Fully Braced against lateral-torsional buckling

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	=		ximum Shear Stress Ratio	=	0.432 : 1
Section used for this span		2x10	Section used for this span		2x10
-	=	794.54 psi		=	51.86 psi
	=	860.20psi		=	120.00 psi
Load Combination		+D+L	Load Combination		+D+L
Location of maximum on span	=	5.000ft	Location of maximum on span	=	0.000 ft
Span # where maximum occurs	=	Span #1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Deflect	ction	0.148 in Ratio =	810>=480		İ
Max Upward Transient Deflection	n	0.000 in Ratio =	0 <480		
Max Downward Total Deflection		0.219 in Ratio =	547 >= 360		
Max Upward Total Deflection		0.000 in Ratio =	0 < 360		

Vertical Reactions		Support notation: Far left is #1			
Load Combination	Support 1	Support 2			
Overall MAXimum	0.592	0.592			
Overall MINimum	0.167	0.167			
D Only	0.167	0.167			
+D+L	0.567	0.567			
+D+S	0.333	0.333			
+D+0.750L	0.467	0.467			
+D+0.750L+0.750S	0.592	0.592			
+0.60D	0.100	0.100			
L Only	0.400	0.400			
S Only	0.167	0.167			

File: Masin Residence.ec6

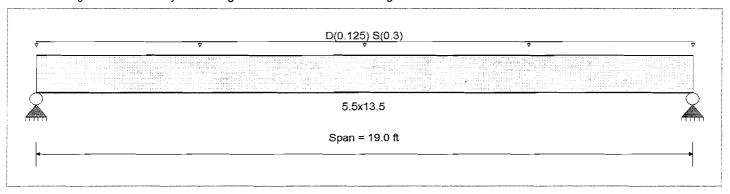
Wood Beam

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31

Lic. #: KW-05008232

MYERS ENGINEERIN

DESCRIPTION: 20. Lower Deck/Porch Beam

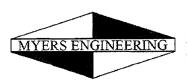

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	2400 psi	E : Modulus of Elasticit	y
Load Combination IBC 2018	Fb -	1850 psi	Ebend-xx	1800 ksi
	Fc - Prll	1650 psi	Eminbend - xx	950 ksi
Wood Species : DF/DF	Fc - Perp	650 psi	Ebend- yy	1600 ksi
Wood Grade : 24F-V4	Fv .	265 psi	Eminbend - yy	850 ksi
77000 Clade . = 7 .	Ft	1100 psi	Density	31.21 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsi	onal buckling	•	•	•


Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.1250, S = 0.30, Tributary Width = 1.0 ft

DESIGN SUMMARY				3-08	Design OK
Maximum Bending Stress Ratio	=	0.504:1 N	Maximum Shear Stress Ratio	=	0.236 : 1
Section used for this span		5.5x13.5	Section used for this span		5.5x13.5
	=	1,377.55psi		=	72.04 psi
	=	2,735.73psi		=	304.75 psi
Load Combination		+D+S	Load Combination		+D+S
Location of maximum on span	=	9.500ft	Location of maximum on span	=	17.891 ft
Span # where maximum occurs	=	Span # 1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Defle	ction	0.436 in Ratio :			
Max Upward Transient Deflection	n	0.000 in Ratio :	= 0<480		
Max Downward Total Deflection		0.618 in Ratio :	= 369>=360		
Max Upward Total Deflection		0.000 in Ratio :	= 0<360		

		: Far left is #1	Values in KIPS	
Support 1	Support 2			
4.038	4.038			
2.850	2.850			
1.188	1.188			
1.188	1.188			
4.038	4.038			
1.188	1.188			
3.325	3.325			
0.713	0.713			
2.850	2.850			
	4.038 2.850 1.188 1.188 4.038 1.188 3.325 0.713	4.038 4.038 2.850 2.850 1.188 1.188 1.188 1.188 4.038 4.038 1.188 1.188 3.325 3.325 0.713 0.713	4.038	4.038

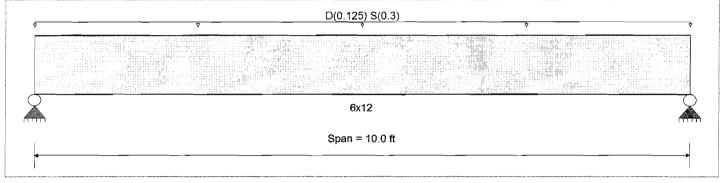
Wood Beam

File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31
MYERS ENGINEERING

Lic. # : KW-06008232

DESCRIPTION: 20a. Lower Deck/Porch Beam

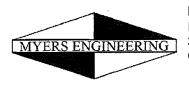

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method : Allowable Stress Design	Fb+	675 psi	E : Modulus of Elastic	ity
Load Combination IBC 2018	Fb-	675 psi	Ebend- xx	1100 ksi
,	Fc - Prll	500 psi	Eminbend - xx	400 ksi
Wood Species Hem-Fir	Fc - Perp	405 psi		
Wood Grade : No.2	Fv	140 psi		
77000 Cidde . 170,	Ft	350 psi	Density	26.84 pcf
Ream Bracing - Ream is Fully Braced against lateral-to-	reional buckling	•	•	•


Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.1250, S = 0.30, Tributary Width = 1.0 ft

DESIGN SUMMARY			•		Design OK
Maximum Bending Stress Ratio	=	0.847 : 1 Ma	ximum Shear Stress Ratio	=	0.317 : 1
Section used for this span		6x12	Section used for this span		6x12
	=	525.86 psi		=	40.83 psi
	=	621.00psi		=	128.80 psi
Load Combination		+D+S	Load Combination		+D+S
Location of maximum on span	=	5.000ft	Location of maximum on span	=	0.000 ft
Span # where maximum occurs	=	Span #1	Span # where maximum occurs	=	Span # 1
Maximum Deflection					
Max Downward Transient Deflect	tion	0.093 in Ratio =	1287 >=480		
Max Upward Transient Deflection	1	0.000 in Ratio =	0 <480		
Max Downward Total Deflection		0.132 in Ratio =	908 >= 360		
Max Upward Total Deflection		0.000 in Ratio =	0 < 360		

Vertical Reactions		Support notation : Far l	eft is #1	Values in KIPS	
Load Combination	Support 1	Support 2			
Overall MAXimum	2.125	2.125			
Overall MlNimum	1.500	1.500			
D Only	0.625	0.625			
+D+L	0.625	0.625			
+D+S	2.125	2.125			
+D+0.750L	0.625	0.625			
+D+0.750L+0.750S	1.750	1.750			
+0.60D	0.375	0.375			
S Only	1.500	1.500			

Wood Beam

File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 MYERS ENGINEERING

Lic.#: KW-06008232

DESCRIPTION: 21. Crawl Space beam NOT at bearing wall

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	900.0 psi	E : Modulus of Elasti	city	
Load Combination IBC 2018	Fb -	900.0 psi	Ebend- xx	1,600.0ksi	
	Fc - Prll	1,350.0 psi	Eminbend - xx	580.0 ksi	
Wood Species : DouglasFir-Larch	Fc - Perp	625.0 psi			
Wood Grade : No.2	Fv	180.0 psi			
	Ft	575.0 psi	Density	31.210 pcf	
Beam Bracing : Beam is Fully Braced against lateral-torsion	al buckling		•	,	

D(0.1875) L(0.5)

4x10

Span = 7.167 ft


Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.1875, L = 0.50, Tributary Width = 1.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.983 1 Ma 4x10 1,061.30 psi 1,080.00 psi	eximum Shear Stress Ratio Section used for this span	=	0.500 : 1 4x10 89.98 psi 180.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+L 3.584ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	<u>=</u>	+D+L 6.408 ft Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection		0.081 in Ratio = 0.000 in Ratio = 0.111 in Ratio = 0.000 in Ratio =	1063 >=360 0 <360 773 >=240 0 <240		

Vertical Reactions		Supp	ort notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2			
Overall MAXimum	2.464	2.464			
Overall MINimum	1.792	1.792			
D Only	0.672	0.672			
+D+L	2.464	2.464			
+D+S	0.672	0.672			
+D+0.750L	2.016	2.016			
+D+0.750L+0.750S	2.016	2.016			
+0.60D	0.403	0.403			
L Only	1.792	1.792			
S Only					

Wood Beam

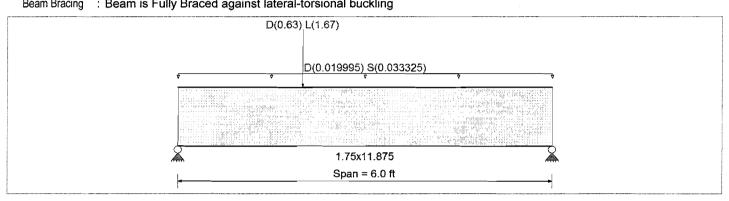
File: Masin Residence.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5.31

MYERS ENGINEERING

Lic.#: KW-06008232

DESCRIPTION: 22. Floor beam under stair rim/cantilever


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method : Allowable Stress Design	Fb+	2325 psi	E : Modulus of Elast	icity
Load Combination IBC 2018	Fb -	2325 psi	Ebend- xx	1550 ksi
	Fc - Prll	2050 psi	Eminbend - xx	787.815 ksi
Wood Species : iLevel Truss Joist	Fc - Perp	800 psi		
Wood Grade : TimberStrand LSL 1.55E	Fv	310 psi		
	Ft	1070 psi	Density	45.01 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsi	onal buckling	·		,

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: $\overline{D = 0.0150}$, S = 0.0250 ksf, Tributary Width = 1.333 ft

Point Load: D = 0.630, L = 1.670 k @ 2.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	= =	0.394: 1 1.75x11.875 914.89psi 2,325.00psi	Maximum Shear Stress Ratio Section used for this span	= =	0.366 : 1 1.75x11.875 113.58 psi 310.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+L 2.015ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	==	+D+L 0.000 ft Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	n	0.030 in Ratio 0.000 in Ratio 0.042 in Ratio 0.000 in Ratio	= 0 <360 = 1696 >= 240		

Vertical Reactions		Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	
Overall MAXimum	1.593	0.827	
Overall MINimum	0.100	0.100	
D Only	0.480	0.270	
+D+L	1.593	0.827	
+D+S	0.580	0.370	
+D+0.750L	1.315	0.687	
+D+0.750L+0.750S	1.390	0.762	
+0.60D	0.288	0.162	
L Only	1.113	0.557	
S Only	0.100	0.100	

Maximum Load For 6x6 DF#1 Wood Post

$$psf := \frac{psi}{144} \qquad plf := psf \cdot ft \qquad lb := plf \cdot ft \qquad H := 10 \cdot ft$$

$$F_c := 1000 \cdot psi$$
 $C_{Fc} := 1$ $C_{Fb} := 1$ $C_M := 1$ $C_L := 1$ $C_{Fc} := 1$

$$F''_c := F_c \cdot C_D \cdot C_{Fc}$$
 $F''_c = 1000 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h}$$
 $C := 0.8$ $K_{CE} := 0.3$

$$F_{CE} := \frac{K_{CE} \cdot E'}{SI^2}$$

$$F_{CE} = 1008 \cdot psi$$

$$C_{p} := \left[\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C}\right)^{2} - \frac{F_{CE}}{C}} \right] \cdot K_{f}$$
 $S = 27.7 \cdot in^{3}$

$$F'_c := C_p \cdot F''_c$$

$$F'_{0} = 694 \cdot ps$$

$$F'_c := C_p \cdot F''_c$$
 $F'_c = 694 \cdot psi$ $P_{max} := F'_c \cdot A$

6x6 Wood Post Properties

$$K_f := 1$$
 ($K_{f = 0.6 \text{ for unbraced nailed}}$ built up posts - 0.75 for bolted)

$$h := 5.5 \cdot in$$

$$t := 5.5 \cdot in$$

$$A := t \cdot h \qquad A = 30.2 \cdot in^2$$

$$I := \frac{t \cdot h^3}{12}$$
 $I = 76.3 \cdot in^4$

$$S := \frac{I \cdot 2}{h} \qquad S = 27.7 \cdot in^{3}$$

$$C_p = 0.69$$

P_{max} = 20989-1b (Maximum post Capacity)

Maximum Load For 6x6 HF#2 Treated Post

$$F_{cc} := 460 \cdot psi$$
 $C_{cc} := 1$ E':= 1045000·psi

$$F''_c = F_c \cdot C_D \cdot C_{Fc}$$
 $F''_c = 460 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h}$$
 $C := 0.8$ $K_{CE} := 0.3$

$$F_{CE} = \frac{K_{CE} \cdot E'}{\text{SI}^2}$$

$$F_{CE} = 659 \cdot \text{psi}$$

$$C_{\text{PA}} = \begin{bmatrix} 1 + \frac{F_{\text{CE}}}{F''_{\text{C}}} \\ \frac{1}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{\text{CE}}}{F''_{\text{C}}}}{2 \cdot C}\right)^2 - \frac{F_{\text{CE}}}{F''_{\text{C}}}} \\ \frac{1}{2 \cdot C} - \frac{F_{\text{CE}}}{F''_{\text{C}}} - \frac{F_{\text{CE}}}{F''_{\text{CE}}} - \frac{F_{\text{$$

$$F'_{a} := C_{p} \cdot F''_{a}$$

$$F'_{c} = 367 \cdot psi$$

6x6 Treated Wood Post Properties

$$h := 5.5 \cdot in$$

$$t := 5.5 \cdot in$$

$$A := t \cdot h \qquad A = 30.2 \cdot in^2$$

$$I = \frac{t \cdot h^3}{12}$$
 $I = 76.3 \cdot in^4$

$$S := \frac{I \cdot 2}{h} \qquad S = 27.7 \cdot in^{3}$$

$$C_{\rm p} = 0.8$$

$$F'_c := C_p \cdot F''_c$$
 $F'_c = 367 \cdot psi$ $P_{max} := F'_c \cdot A$ $P_{max} = 11112 \cdot lb$ (Maximum post Capacity)

Maximum Load For 3-2x6 HF Stud Built up Wood Post

$$psf := \frac{psi}{144}$$
 $plf := psf \cdot ft$ $lb := plf \cdot ft$ $H := 10 \cdot ft$

$$F_{\infty} := 800 \text{ psi}$$
 $C_{\text{DD}} := 1$ $C_{\text{EDD}} := 1$ $C_{\text{DD}} := 1$ $C_{\text{EDD}} := 1.1$

$$F''_c := F_c \cdot C_D \cdot C_{Fc}$$
 $F''_c = 880 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h}$$
 $C := 0.8$ $K_{CE} := 0.3$

$$F_{CE} = \frac{K_{CE} \cdot E'}{SL^2}$$

$$F_{CE} = 756 \cdot psi$$

$$C_{\text{max}} := \begin{bmatrix} 1 + \frac{F_{CE}}{F''_{c}} \\ \frac{1}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C}\right)^{2} - \frac{F_{CE}}{F''_{c}}} \\ - \frac{F_{CE}}{C} \end{bmatrix} \cdot K_{f}$$

$$S = 22.7 \cdot in^{3}$$

$$C_{p} = 0.64$$

$$F'_{c} := C_{p} \cdot F''_{c}$$

$$F'_c = 560 \cdot psi$$

$$P_{c} \cdot A$$

3-2x6 Built Up Post Properties

$$K_f = 1.0$$
 ($K_f = 0.6$ for unbraced nailed built up posts - 0.75 for bolted)

$$h_{\infty} = (5.5) \cdot in$$

$$t = 3 \cdot (1.5) \cdot in$$

$$A := t \cdot h \qquad A = 24.8 \cdot in^2$$

$$I = \frac{t \cdot h^3}{12} \qquad I = 62.4 \cdot in^4$$

$$S := \frac{I \cdot 2}{h}$$
 $S = 22.7 \cdot in^3$

$$C_p = 0.64$$

 $F'_c := C_p \cdot F''_c$ $F'_c = 560 \cdot psi$ $P_{max} := F'_c \cdot A$ $P_{max} = 13863 \cdot lb$ (Maximum post Capacity)

Maximum Load For 2-2x6 HF Stud Built up Wood Post

$$psf := \frac{psi}{144} \qquad plf := psf \cdot ft \qquad lb := plf \cdot ft \qquad H := 10 \cdot ft$$

$$F_c^{"} := F_c \cdot C_D \cdot C_{Fc}$$
 $F_c^{"} = 880 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h}$$
 $C := 0.8$ $K_{CE} := 0.3$

$$F_{CE} := \frac{K_{CE} \cdot E'}{SL^2}$$

$$F_{CE} = 756 \cdot psi$$

$$F_{CE} = 756 \cdot psi$$

$$C_{\text{p}} := \begin{bmatrix} 1 + \frac{F_{CE}}{F^{"}_{c}} \\ \frac{1 + \frac{F_{CE}}{F^{"}_{c}}}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{CE}}{F^{"}_{c}}}{2 \cdot C}\right)^{2} - \frac{F_{CE}}{F^{"}_{c}}} \end{bmatrix} \cdot K_{f}$$

$$S := \frac{I \cdot 2}{h} \qquad S = 15.1 \cdot in^{3}$$

$$C_{p} = 0.64$$

$$F_{p} := C_{p} \cdot F_{p}$$

$$F'_{c} := C_{p} \cdot F''_{c}$$
 $F'_{c} = 560 \cdot psi$

$$P_{c'}A$$

2-2x6 Built Up Post Properties

$$K_f = 1.0$$
 ($K_{f = 0.6 \text{ for unbraced nailed}}$

$$h:= 5.5 \cdot in$$

$$t:= (2) \cdot 1.5 \cdot in$$

$$A := t \cdot h \qquad A = 16.5 \cdot in^2$$

$$I = \frac{t \cdot h^3}{12}$$
 $I = 41.6 \cdot in^4$

$$S = \frac{I \cdot 2}{h} \qquad S = 15.1 \cdot in$$

$$C_{\rm p} = 0.64$$

$$P_{\text{max}} = F_c \cdot A$$
 $P_{\text{max}} = 9242 \cdot lb$ (Maximum post Capacity)

Maximum Load For 3-2x4 HF Stud Built up Wood Post

$$psf := \frac{psi}{144} \quad plf := psf \cdot ft \qquad lb := plf \cdot ft \qquad H := 10 \cdot ft$$

$$F_{C}:= 800 \cdot psi$$
 $C_{D}:= 1$ $C_{E}:= 1$ $C_{E}:= 1$ $C_{E}:= 1$ $C_{E}:= 1.1$

$$F''_{c} = F_{c} \cdot C_{D} \cdot C_{Fc}$$
 $F''_{c} = 880 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h}$$
 $C := 0.8$ $K_{CE} := 0.3$

$$F_{CE} = \frac{K_{CE} \cdot E'}{SL^2}$$

$$F_{CE} = 306 \cdot psi$$

$$\text{Constant} = \left[\frac{1 + \frac{F_{CE}}{F^{"}_{c}}}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{CE}}{F^{"}_{c}}}{2 \cdot C}\right)^{2} - \frac{F_{CE}}{F^{"}_{c}}} \right] \cdot K_{f}$$

$$\text{Simple Signal$$

$$F'_c := C_p \cdot F''_c$$

$$F_c' = 280 \cdot psi$$

$$F'_{c} := C_{p} \cdot F''_{c}$$
 $F'_{c} = 280 \cdot psi$ $P_{max} := F'_{c} \cdot A$

3-2x4 Built Up Post Properties

$$K_f = 1.0$$
 ($K_f = 0.6$ for unbraced nailed built up posts - 0.75 for bolted)

$$h := 3.5 \cdot in$$

$$t := 3 \cdot 1.5 \cdot in$$

$$A := t \cdot h \qquad A = 15.7 \cdot in^2$$

$$I = \frac{t \cdot h^3}{12}$$
 $I = 16.1 \cdot in^4$

$$S := \frac{I \cdot 2}{h} \qquad S = 9.2 \cdot in$$

$$C_p = 0.32$$

P_{max} = 4411·1b (Maximum post Capacity)

Maximum Load For 2-2x4 HFStud Built up Wood Post $psf := \frac{psi}{144}$ $plf := psf \cdot ft$ $plf := plf \cdot ft$ $plf := plf \cdot ft$

$$lb := plf \cdot ft$$
 $H := 10 \cdot f$

$$F_{\infty} := 800 \cdot \text{psi}$$
 $C_{\infty} := 1$ $C_{\infty} := 1$ $C_{\infty} := 1$ $C_{\infty} := 1$ $C_{\infty} := 1.1$

$$F''_c := F_c \cdot C_D \cdot C_{Fc}$$
 $F''_c = 880 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h}$$
 $C := 0.8$ $K_{CE} := 0.3$

$$F_{CE} = \frac{K_{CE} \cdot E'}{SI^2}$$

$$F_{CE} = 306 \cdot psi$$

$$C_{\text{p}} := \left[\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C}\right)^{2} - \frac{F_{CE}}{F''_{c}}} \right] \cdot K_{f}$$
 $S = 6.1 \cdot in^{3}$ $C_{p} = 0.32$

$$F'_{c} = C_{p} \cdot F''_{c}$$

$$F'_c = 280 \cdot psi$$

$$P_{c} \cdot A$$

2-2x4 Built Up Post Properties

$$K_f := 1.0$$

$$K_f = 1.0$$
 ($K_f = 0.6$ for unbraced nailed built up posts - 0.75 for bolted)

$$h := 3.5 \cdot in$$

$$t_{0} := (2) \cdot 1.5 \cdot in$$

$$A := t \cdot h \qquad A = 10.5 \cdot in^2$$

$$I := \frac{t \cdot h^3}{12} \qquad I = 10.7 \cdot in^4$$

$$S = \frac{I \cdot 2}{h} \qquad S = 6.1 \cdot in^3$$

$$C_p = 0.32$$

Email: myengineer@centurytel.net

Maximum Load For 4x4 HF#2 Treated Post

$$psf := \frac{psi}{144}$$
 $plf := psf \cdot ft$ $lb := plf \cdot ft$ $H := 6.25 \cdot ft$

$$F_{\infty} := 1040 \cdot \text{psi}$$
 $C_{\infty} := 1$ $C_{\text{Fb}} := 1$ $C_{\infty} := 1$ $C_{\infty} := 1$ $C_{\infty} := 1$

Gig Harbor, WA 98335

$$F''_c := F_c \cdot C_D \cdot C_{Fc}$$
 $F''_c = 1040 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h}$$
 $C := 0.8$ $K_{CE} := 0.3$

$$F_{CE} = \frac{K_{CE} \cdot E'}{SL^2}$$

$$F_{CE} = 807 \cdot psi$$

$$\text{Constant} = \left[\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C}\right)^2 - \frac{F_{CE}}{F''_{c}}} \right] \cdot K_{f}$$

$$\text{Similar} = \frac{I \cdot 2}{h} \quad S = 7.1 \cdot in^3$$

$$C_{p} = 0.6$$

$$F'_{c} := C_{p} \cdot F''_{c}$$

$$F'_c = 622 \cdot ps$$

$$P_{\text{max}} := F'_{c} \cdot A$$

4x4 Treated Wood Post Properties

$$K_f = 1.0$$
 ($K_f = 0.6$ for unbraced nailed built up posts - 0.75 for bolted)

$$h_{\Delta} = 3.5 \cdot in$$

$$A = 12.2 \cdot \text{in}^2$$

$$I := \frac{t \cdot h^3}{12} \qquad I = 12.5 \cdot in^4$$

$$S := \frac{I \cdot 2}{h} \qquad S = 7.1 \cdot in^3$$

$$C_p = 0.6$$

$$F'_c := C_p \cdot F''_c$$
 $F'_c = 622 \cdot psi$ $P_{max} := F'_c \cdot A$ $P_{max} = 7618 \cdot lb$ (Maximum post Capacity)